CS 172 Spring 2007 — Discussion Handout 10

1. Satisfied, but not too satisfied
We define a #-assignment to a 3cnf formula ¢ as an assignment such that each clause contains two
literals with unequal truth values (note that this must necessarily be a satisfying assignment).

(a) Prove that the negation of a #-assignment is also a #-assignment.

(b) Let #SAT be the collection of 3cnf-formulas that have an #-assignment. Obtain a polynomial
time reduction from 3SAT to #SAT by replacing each clause ¢; = (y1 V y2 V y3) with the two
clauses (y1 Vya V z;) and (y3 V Z; V b), where z; is a new variable for the clause ¢; and b is a single
new variable for the whole formula. Prove the correctness of this reduction.

2. Hard to break off from many
A cut of an undirected graph G is defined as a partition of the vertex set into two disjoint subsets S
and T'. The size of the cut is the number of edges having one endpoint in S and one in 7. Let

MAX — CUT = {(G, k)| Ghas a cut of size at least k}

Show that MAX-CUT is NP-complete by arguing the correctness of the following reduction from #SAT
to MAX-CUT:

Given a formula ¢ with n variables and m clauses, create a graph having 3m vertices for each variable
and 3m for its negation. Connect all vertices corresponding to x to all vertices corresponding to Z.
Finally, identify 3 vertices for each literal with every clause (i.e. divide the 3m clauses into m groups
of 3 each). For each clause ¢;, form a triangle out of the vertices corresponding to the literals in the
clause, using only the vertices in the groups corresponding to g;.

3. Newer heights of nastiness
Not only is computing the exact solution of many optimization problems NP-complete, it is even NP-
complete to solve these problems approximately. For (say) a minimization problem, we say that an
algorithm gives an r approximation if the cost of the solution given by the algorithm is no more that
r times the cost of the optimum. Show that the following problem is NP-complete for any constant
r>0:

r-APPROX-TSP: Given a set of points P, a cost function f: P x P — N and a number k, determine
if there is a TSP solution of cost at most 7 - k.

(Hint: Modify the reduction from Hamiltonian Path to T'SP)

4. Old favorites: Adding colors to life

k-COLORABILITY is the problem of finding an assignment of 1 color to each vertex of a given graph
G, out of a total of k colors. such that no two adjacent vertices have the same color. These are some
of the hardest NP problems to even approximate - the best known algorithm may use as many as
O(n%211) colors to color a graph which is actually 3-colorable. 2-colorability, however, can be solved
in polynomial time.

Here we construct a reduction to show that 3-COLORABOLITY is NP-Complete by reducing 3SAT
to 3-COLORABILITY. We have the following components in the graph to “simulate” a 3SAT formula:



i) A triangle to represent the states true, false and a third state don’t-care. This is because
all 3 vertices of a triangle must be colored differently and we can interpret each color as stated
above. We’ll now use the numbers 1, 2 and 3 for the colors corresponding to true, false and
don’t-care.

ii) For each variable x we have two vertices, one for 2 and one for Z.
iii) A “sort of” OR-gate as shown below, which has the property that ys can be of color 1 (true) if

and only if one of a and b is true (given that a and b take only true and false values).

a Yy
° 1

We now carry out the reduction in steps:

a) Prove the property of the OR-gate.

b) Connect the variables to the truth-triangle appropriately to ensure that each vertex z; and Z; is
only colored true or false. Also, ensure that x; and Z; do not get the same color.

c¢) Use the OR-gate to construct a gadget to check if a 3-clause is true using the colors of the 3
literals appearing in it.



