
CS 172 Spring 2007 — Discussion Handout 10

1. Satisfied, but not too satisfied
We define a 6=-assignment to a 3cnf formula φ as an assignment such that each clause contains two
literals with unequal truth values (note that this must necessarily be a satisfying assignment).

(a) Prove that the negation of a 6=-assignment is also a 6=-assignment.

(b) Let 6=SAT be the collection of 3cnf-formulas that have an 6=-assignment. Obtain a polynomial
time reduction from 3SAT to 6=SAT by replacing each clause ci = (y1 ∨ y2 ∨ y3) with the two
clauses (y1 ∨ y2 ∨ zi) and (y3 ∨ zi ∨ b), where zi is a new variable for the clause ci and b is a single
new variable for the whole formula. Prove the correctness of this reduction.

2. Hard to break off from many
A cut of an undirected graph G is defined as a partition of the vertex set into two disjoint subsets S

and T . The size of the cut is the number of edges having one endpoint in S and one in T . Let

MAX − CUT = {〈G, k〉| Ghas a cut of size at least k}

Show that MAX-CUT is NP-complete by arguing the correctness of the following reduction from 6=SAT
to MAX-CUT:

Given a formula φ with n variables and m clauses, create a graph having 3m vertices for each variable
and 3m for its negation. Connect all vertices corresponding to x to all vertices corresponding to x.
Finally, identify 3 vertices for each literal with every clause (i.e. divide the 3m clauses into m groups
of 3 each). For each clause ci, form a triangle out of the vertices corresponding to the literals in the
clause, using only the vertices in the groups corresponding to gi.

3. Newer heights of nastiness
Not only is computing the exact solution of many optimization problems NP-complete, it is even NP-
complete to solve these problems approximately. For (say) a minimization problem, we say that an
algorithm gives an r approximation if the cost of the solution given by the algorithm is no more that
r times the cost of the optimum. Show that the following problem is NP-complete for any constant
r > 0:

r-APPROX-TSP: Given a set of points P , a cost function f : P × P → N and a number k, determine
if there is a TSP solution of cost at most r · k.

(Hint: Modify the reduction from Hamiltonian Path to TSP)

4. Old favorites: Adding colors to life
k-COLORABILITY is the problem of finding an assignment of 1 color to each vertex of a given graph
G, out of a total of k colors. such that no two adjacent vertices have the same color. These are some
of the hardest NP problems to even approximate - the best known algorithm may use as many as
O(n0.2111) colors to color a graph which is actually 3-colorable. 2-colorability, however, can be solved
in polynomial time.

Here we construct a reduction to show that 3-COLORABOLITY is NP-Complete by reducing 3SAT
to 3-COLORABILITY. We have the following components in the graph to “simulate” a 3SAT formula:



i) A triangle to represent the states true, false and a third state don’t-care. This is because
all 3 vertices of a triangle must be colored differently and we can interpret each color as stated
above. We’ll now use the numbers 1, 2 and 3 for the colors corresponding to true, false and
don’t-care.

ii) For each variable x we have two vertices, one for x and one for x̄.

iii) A “sort of” OR-gate as shown below, which has the property that y2 can be of color 1 (true) if
and only if one of a and b is true (given that a and b take only true and false values).

a

b

y

y

1

2

y3

We now carry out the reduction in steps:

a) Prove the property of the OR-gate.

b) Connect the variables to the truth-triangle appropriately to ensure that each vertex xi and x̄i is
only colored true or false. Also, ensure that xi and x̄i do not get the same color.

c) Use the OR-gate to construct a gadget to check if a 3-clause is true using the colors of the 3
literals appearing in it.

2


