CS 172 Spring 2007 - Discussion Handout 10

1. Satisfied, but not too satisfied

We define a \neq-assignment to a 3 cnf formula ϕ as an assignment such that each clause contains two literals with unequal truth values (note that this must necessarily be a satisfying assignment).
(a) Prove that the negation of a \neq-assignment is also a \neq-assignment.
(b) Let \neq SAT be the collection of 3 cnf-formulas that have an \neq-assignment. Obtain a polynomial time reduction from 3SAT to $\neq \mathrm{SAT}$ by replacing each clause $c_{i}=\left(y_{1} \vee y_{2} \vee y_{3}\right)$ with the two clauses $\left(y_{1} \vee y_{2} \vee z_{i}\right)$ and $\left(y_{3} \vee \overline{z_{i}} \vee b\right)$, where z_{i} is a new variable for the clause c_{i} and b is a single new variable for the whole formula. Prove the correctness of this reduction.

2. Hard to break off from many

A cut of an undirected graph G is defined as a partition of the vertex set into two disjoint subsets S and T. The size of the cut is the number of edges having one endpoint in S and one in T. Let

$$
M A X-C U T=\{\langle G, k\rangle \mid G \text { has a cut of size at least } k\}
$$

Show that MAX-CUT is NP-complete by arguing the correctness of the following reduction from \neq SAT to MAX-CUT:

Given a formula ϕ with n variables and m clauses, create a graph having $3 m$ vertices for each variable and $3 m$ for its negation. Connect all vertices corresponding to x to all vertices corresponding to \bar{x}. Finally, identify 3 vertices for each literal with every clause (i.e. divide the $3 m$ clauses into m groups of 3 each). For each clause c_{i}, form a triangle out of the vertices corresponding to the literals in the clause, using only the vertices in the groups corresponding to g_{i}.

3. Newer heights of nastiness

Not only is computing the exact solution of many optimization problems NP-complete, it is even NPcomplete to solve these problems approximately. For (say) a minimization problem, we say that an algorithm gives an r approximation if the cost of the solution given by the algorithm is no more that r times the cost of the optimum. Show that the following problem is NP-complete for any constant $r>0$:
$r-A P P R O X$ - $T S P$: Given a set of points P, a cost function $f: P \times P \rightarrow \mathbb{N}$ and a number k, determine if there is a TSP solution of cost at most $r \cdot k$.
(Hint: Modify the reduction from Hamiltonian Path to TSP)

4. Old favorites: Adding colors to life

k-COLORABILITY is the problem of finding an assignment of 1 color to each vertex of a given graph G, out of a total of k colors. such that no two adjacent vertices have the same color. These are some of the hardest NP problems to even approximate - the best known algorithm may use as many as $O\left(n^{0.2111}\right)$ colors to color a graph which is actually 3 -colorable. 2-colorability, however, can be solved in polynomial time.
Here we construct a reduction to show that 3-COLORABOLITY is NP-Complete by reducing 3SAT to 3-COLORABILITY. We have the following components in the graph to "simulate" a 3SAT formula:
i) A triangle to represent the states true, false and a third state don't-care. This is because all 3 vertices of a triangle must be colored differently and we can interpret each color as stated above. We'll now use the numbers 1,2 and 3 for the colors corresponding to true, false and don't-care.
ii) For each variable x we have two vertices, one for x and one for \bar{x}.
iii) A "sort of" OR-gate as shown below, which has the property that y_{2} can be of color 1 (true) if and only if one of a and b is true (given that a and b take only true and false values).

We now carry out the reduction in steps:
a) Prove the property of the OR-gate.
b) Connect the variables to the truth-triangle appropriately to ensure that each vertex x_{i} and \bar{x}_{i} is only colored true or false. Also, ensure that x_{i} and \bar{x}_{i} do not get the same color.
c) Use the OR-gate to construct a gadget to check if a 3-clause is true using the colors of the 3 literals appearing in it.

