CS 172 Spring 2007 — Discussion Handout 10

1. Satisfied, but not too satisfied

We define a \neq -assignment to a 3cnf formula ϕ as an assignment such that each clause contains two literals with unequal truth values (note that this must necessarily be a satisfying assignment).

- (a) Prove that the negation of a \neq -assignment is also a \neq -assignment.
- (b) Let \neq SAT be the collection of 3cnf-formulas that have an \neq -assignment. Obtain a polynomial time reduction from 3SAT to \neq SAT by replacing each clause $c_i = (y_1 \lor y_2 \lor y_3)$ with the two clauses $(y_1 \lor y_2 \lor z_i)$ and $(y_3 \lor \overline{z_i} \lor b)$, where z_i is a new variable for the clause c_i and b is a single new variable for the whole formula. Prove the correctness of this reduction.

2. Hard to break off from many

A cut of an undirected graph G is defined as a partition of the vertex set into two disjoint subsets S and T. The size of the cut is the number of edges having one endpoint in S and one in T. Let

 $MAX - CUT = \{ \langle G, k \rangle | G \text{has a cut of size at least } k \}$

Show that MAX-CUT is NP-complete by arguing the correctness of the following reduction from \neq SAT to MAX-CUT:

Given a formula ϕ with *n* variables and *m* clauses, create a graph having 3m vertices for each variable and 3m for its negation. Connect all vertices corresponding to *x* to all vertices corresponding to \overline{x} . Finally, identify 3 vertices for each literal with every clause (i.e. divide the 3m clauses into *m* groups of 3 each). For each clause c_i , form a triangle out of the vertices corresponding to the literals in the clause, using only the vertices in the groups corresponding to g_i .

3. Newer heights of nastiness

Not only is computing the exact solution of many optimization problems NP-complete, it is even NPcomplete to solve these problems approximately. For (say) a minimization problem, we say that an algorithm gives an r approximation if the cost of the solution given by the algorithm is no more that r times the cost of the optimum. Show that the following problem is NP-complete for any constant r > 0:

r-APPROX-TSP: Given a set of points P, a cost function $f : P \times P \to \mathbb{N}$ and a number k, determine if there is a TSP solution of cost at most $r \cdot k$.

(Hint: Modify the reduction from Hamiltonian Path to TSP)

4. Old favorites: Adding colors to life

k-COLORABILITY is the problem of finding an assignment of 1 color to each vertex of a given graph G, out of a total of k colors. such that no two adjacent vertices have the same color. These are some of the hardest NP problems to even approximate - the best known algorithm may use as many as $O(n^{0.2111})$ colors to color a graph which is actually 3-colorable. 2-colorability, however, can be solved in polynomial time.

Here we construct a reduction to show that 3-COLORABOLITY is NP-Complete by reducing 3SAT to 3-COLORABILITY. We have the following components in the graph to "simulate" a 3SAT formula:

- i) A triangle to represent the states true, false and a third state don't-care. This is because all 3 vertices of a triangle must be colored differently and we can interpret each color as stated above. We'll now use the numbers 1, 2 and 3 for the colors corresponding to true, false and don't-care.
- ii) For each variable x we have two vertices, one for x and one for \bar{x} .
- iii) A "sort of" OR-gate as shown below, which has the property that y_2 can be of color 1 (true) if and only if one of a and b is true (given that a and b take only true and false values).

We now carry out the reduction in steps:

- a) Prove the property of the OR-gate.
- b) Connect the variables to the *truth-triangle* appropriately to ensure that each vertex x_i and \bar{x}_i is only colored **true** or **false**. Also, ensure that x_i and \bar{x}_i do not get the same color.
- c) Use the OR-gate to construct a gadget to check if a 3-clause is **true** using the colors of the 3 literals appearing in it.