
CS 172 Spring 2007 — Discussion Handout 14

1. Zero-Knowledge with Titanium Vaults
In this problem we will demonstrate a zero-knowledge protocol for showing that a graph is 3-colorable.
We assume that we can pass on bits of information locked in titanium vaults to the verifier. The verifier
can then ask for the keys to any (but only few) vaults of her choice.

Let the input be a graph G : ([n], E). Assume that the prover knows a valid 3-coloring C : [n] →
{Red,Green,Blue} such that no two adjacent vertices have the same color. We then give the following
protocol for proving 3-colorability:

Prover: Selects a random permutation π : {Red,Green,Blue} → {Red, Green, Blue} and obtains C ′ =
π(C). Note that C ′ is also a valid coloring if C is. The prover then locks each C ′(i) in a different
vault Ti and sends all the vaults to the verifier.

Verifier: Selects a random edge (i, j) ∈ E and asks for the keys Ki,Kj to Ti and Tj .

Prover: Sends Ki and Kj .

Verifier: Opens Ti, Tj and checks if C ′(i) 6= C ′(j). The verifier accepts if they are two different colors out
of Red, Green and Blue, and rejects otherwise.

(a) Argue that the protocol is complete i.e. it is possible to make the verifier accept a 3-colorable
graph with probability 1.

(b) Argue that the protocol is sound - show that the verifier rejects a non 3-colorable graph with at
least some positive probability.

(c) Show that the protocol is “zero-knowledge” i.e. if the graph is 3-colorable, the verifier learns
nothing about the coloring. More formally, assume that the verifier cannot assume the vaults and
exhibit a simulator for the honest verifier as well as an arbitrary verifier.

(d) Cryptographic equivalents of the titanium vaults we required can in fact, be constructed (under
certain complexity assumptions). They are more formally known as commitment schemes. These
allow encoding a message (using a random key) in such a way that it is computationally infeasible
to infer the message from the codeword and no codeword corresponds to two different messages
(even with different keys). To “open” the vault, the verifier uses the message m the key k and
the codeword C and checks that Decoding(C,m, k) = m.
Why do we need the second property? If we plug-in these commitment schemes for the vaults,
does this zero-knowledge protocol satisfy the definition we saw in class?

(e) To obtain better soundness, we would like to repeat the protocol several times to reduce the error
probability (say, to less than 1/2). Is it clear that repetition of zero-knowledge proofs preserves
the zero-knowledge property? Why, or why not?


