CS 172 Spring 2007 — Discussion Handout 5

1. To decide or not to decide

For each of the following languages, give a proof that it is undecidable or describe an algorithm to decide it. (You may assume that all the languages are over the alphabet $\{0,1\}$ and all the Turing machines have $\{0,1\}$ as their input alphabet.)

- (a) $L_1 = \{ \langle M \rangle \mid M \text{ is a Turing machine that rejects all inputs of even length} \}.$
- (b) $L_2 = \{ \langle M \rangle \mid M \text{ is a Turing machine that halts on an empty input} \}.$
- (c) $L_3 = \{ \langle M \rangle \mid \text{there is some input } x \in \{0, 1\}^* \text{ such that } M \text{ accepts } x \text{ in less than 100 steps } \}.$

2. More on halting

 $H_{TM}^{1/2} = \{(\langle M \rangle, x, y) \mid M \text{ halts on } x \text{ but not on } y\}.$

- (a) Show that $\overline{H_{TM}} \leq_m H_{TM}^{1/2}$
- (b) Use part (a) to show that neither $H_{TM}^{1/2}$ nor $\overline{H_{TM}^{1/2}}$ is recognizable.

3. Erasers are hard to find

Consider the problem of testing whether a given single-tape Turing machine ever writes a blank symbol over a nonblank symbol during the course of its computation on any string input to it i.e. does it ever erase anything on the tape. Formulate this problem as a language, and show that it is undecidable.

4. Consent in its refusal

Let L be a Turing-recognizable language and let \overline{L} be non-Turing recognizable. We defined the following language in the previous discussion:

$$L' = \{0w \mid w \in L\} \cup \{1w \mid w \notin L\}$$

- (a) Show that $L' \leq_m \overline{L'}$.
- (b) Show that for any undecidable language having the property that $B \leq_m \overline{B}$, neither B nor \overline{B} is Turing-recognizable.