CS 172 Spring 2007 - Discussion Handout 5

1. To decide or not to decide

For each of the following languages, give a proof that it is undecidable or describe an algorithm to decide it. (You may assume that all the languages are over the alphabet $\{0,1\}$ and all the Turing machines have $\{0,1\}$ as their input alphabet.)
(a) $L_{1}=\{\langle M\rangle \mid M$ is a Turing machine that rejects all inputs of even length $\}$.
(b) $L_{2}=\{\langle M\rangle \mid M$ is a Turing machine that halts on an empty input $\}$.
(c) $L_{3}=\left\{\langle M\rangle \mid\right.$ there is some input $x \in\{0,1\}^{*}$ such that M accepts x in less than 100 steps $\}$.
2. More on halting
$H_{T M}^{1 / 2}=\{(\langle M\rangle, x, y) \mid M$ halts on x but not on $y\}$.
(a) Show that $\overline{H_{T M}} \leq_{m} H_{T M}^{1 / 2}$.
(b) Use part (a) to show that neither $H_{T M}^{1 / 2}$ nor $\overline{H_{T M}^{1 / 2}}$ is recognizable.

3. Erasers are hard to find

Consider the problem of testing whether a given single-tape Turing machine ever writes a blank symbol over a nonblank symbol during the course of its computation on any string input to it i.e. does it ever erase anything on the tape. Formulate this problem as a language, and show that it is undecidable.

4. Consent in its refusal

Let L be a Turing-recognizable language and let \bar{L} be non-Turing recognizable. We defined the following language in the previous discussion:

$$
L^{\prime}=\{0 w \mid w \in L\} \cup\{1 w \mid w \notin L\}
$$

(a) Show that $L^{\prime} \leq_{m} \overline{L^{\prime}}$.
(b) Show that for any undecidable language having the property that $B \leq_{m} \bar{B}$, neither B nor \bar{B} is Turing-recognizable.

