CS 172 Spring 2007 - Discussion Handout 8

1. How many zeroes?

Explain why a Kolmogorov random string of length n (for sufficiently large n) cannot have $n / 4$ zeroes and $3 n / 4$ ones.

2. Kolmogorov Graphs

A graph on n vertices can be represented by string of $n(n-1) / 2$ bits (why?). We call a graph G Kolmogorov-random, if the corresponding string is Kolmogorov-random. Show that for sufficiently large n, a Kolmogorov-random graph on n vertices must be connected.

3. Computable sets cannot be random

Let A be any enumerable subset of natural numbers. An infinite binary string $a_{0} a_{1} a_{2} \ldots$ is called the characteristic sequence of A if $a_{i}=1 \Leftrightarrow i \in A$. Show that for sufficiently large n

$$
K\left(a_{0} a_{1} \ldots a_{n}\right)=O(\log n)
$$

4. The (weak) Prime Number Theorem

The prime number theorem says that for large n, the number of prime numbers less than n (denoted by $\pi(n)$) is approximately $n / \ln n$. We can use Kolmogorov complexity to show a weak version of this statement which shows that for infinitely many $n, \pi(n) \geq \frac{n}{\log ^{2} n}$.
Let p_{i} denote the i th prime, so we have $p_{1}=2, p_{2}=3$, etc. Fix any positive integer m (written as a binary string), and let p_{k} be the largest prime that divides m. Then, we can "describe" m by specifying p_{k} and m / p_{k}.
(a) Show that $K(m) \leq 2 \log |k|+|k|+\left|m / p_{k}\right|+O(1)$. (Here, $|k|$ denotes the length of the binary representation of k, and $O(1)$ is a universal constant independent of k and m. We also know that for all binary strings $x, y, K(x y) \leq 2 K(x)+K(y)+O(1)$.)
(b) By picking m to be a Kolmogorov-random string, show that $p_{k} \leq O\left(k(\log k)^{2}\right)$.
(c) Show that this gives an n such that $\pi(n) \geq \frac{n}{\log ^{2} n}$.
(d) Can you improve this bound to $\frac{n}{\log n(\log \log n)^{2}}$?

