Problem Set 8

This problem set is due on Thursday April 19, by 5:00pm.
Use the CS172 drop box.
Write your name and your student ID number on your solution. Write legibly. The description of your proofs should be as clear as possible (which does not mean long - in fact, typically, good clear explanations are also short.) Be sure to be familiar with the collaboration policy, and read the overview in the class homepage www.cs.berkeley.edu/~luca/cs172.

1. Define $S E T C O V E R$ to be $\left\{\left(U, S_{1}, \ldots, S_{m}, k\right) \mid \forall i, S_{i} \subset U\right.$, and there is $I \subseteq\{1, \ldots, m\}$ with $|I|=k$ and $\left.U=\bigcup_{i \in I} S_{i}\right\}$ Show that SETCOVER is NP-complete.
2. Define the language

ShortestPath $=\{(G, k, s, t) \mid$ the shortest path from s to t in G has length $k\}$
(a) Prove that ShortestPath is in NL.
(b) Prove that ShortestPath is in \mathbf{L} if and only if $\mathbf{L}=\mathbf{N L}$.
3. (Sipser 8.9) A ladder is a sequence of strings $s_{1}, s_{2}, \ldots, s_{k}$, wherein every string differs from the preceding one in exactly one character. For example the following is a ladder of English words, starting with "head" and ending with "free": head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free.
Let $L A D D E R_{\text {DFA }}=\{\langle M, s, t\rangle \mid M$ is a DFA and $L(M)$ contains a ladder of strings, starting with s and ending with $t\}$. Show that $L A D D E R_{\mathrm{DFA}}$ is in PSPACE.

