Problem Set 9

This problem set is due on Wednesday April 25, by 5:00pm.
Use the CS172 drop box.
Write your name and your student ID number on your solution. Write legibly. The description of your proofs should be as clear as possible (which does not mean long - in fact, typically, good clear explanations are also short.) Be sure to be familiar with the collaboration policy, and read the overview in the class homepage www.cs.berkeley.edu/~luca/cs172.

1. (Sipser 8.25) An undirected graph is bipartite if its nodes can be divided into two sets such that all edges go from a node in one set to a node in the other set. Show that a graph is bipartite iff it does not contain a cycle that contains an odd number of nodes. Let BIPARTITE $=$ $\{\langle G\rangle \mid G$ is a bipartite graph $\}$. Show that BIPARTITE $\in \mathbf{N L}$.
2. (Sipser 8.23) Define $U C Y C L E=\{\langle G\rangle \mid G$ is an undirected graph that contains a simple cycle\}. Show that $U C Y C L E \in \mathbf{L}$. (Note: G may not be connected.)
Hint: We can try to search the tree by always traversing the edges incident on a vertex in lexicographic order i.e. if we come in through the i th edge, we go out through the $(i+1)$ th edge or the first edge if the degree is i. How does this algorithm behave on a tree? How about a graph with a cycle?
3. We define the product of two $n \times n$ boolean matrices A and B as another $n \times n$ boolean matrix C such that $C_{i j}=\vee_{k=1}^{n} A_{i k} \wedge B k j$. (We think of 0 as false and 1 as true for this problem.)
(a) Show that boolean matrix multiplication can be done in logarithmic space.
(b) Using repeated squaring, argue that A^{p} can be computed in space $O(\log n \log p)$.
(c) Show that if A is the adjacency matrix of a graph, then $\left(A^{k}\right)_{i j}=1$ if and only if there is a path of length at most k from the vertex i to vertex j and is 0 otherwise.
(d) Use the above to give an alternative proof that $\mathbf{N L} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right)$.
