
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 5
Professor Luca Trevisan April 2007

Notes on Space-Bounded Complexity

These are notes for CS278, Computational Complexity, scribed by students in January 2001, revised
in August 2002, April 2004, and then April 2007.) Sections 4 and 5 are “bonus” material, not
part of the syllabus. These notes do not include the proof of PSPACE-completeness of the TQBF
problem, which is well explained in Sipser’s book. The problem called PATH in Siper’s book is called
STCONN here. L.T.

1 Space-Bounded Complexity Classes

A machine solves a problem using space s(·) if, for every input x, the machine outputs the correct
answer and uses only the first s(|x|) cells of the tape. For a standard Turing machine, we can’t do
better than linear space since x itself must be on the tape. So we will often consider a machine with
multiple tapes: a read-only “input” tape, a read/write “work” or “memory” tape, and possibly a
write-once “output” tape. Then we can say the machine uses space s if for input x, it uses only
the first s(|x|) cells of the work tape.

We denote by L the set of decision problems solvable in O(log n) space. We denote by PSPACE
the set of decision problems solvable in polynomial space. A first observation is that a space-efficient
machine is, to a certain extent, also a time-efficient one. In general we denote by SPACE(s(n))
the set of decision problems that can be solved using space at most s(n) on inputs of length n.

Theorem 1 If a machine always halts, and uses s(·) space, with s(n) ≥ log n, then it runs in time
2O(s(n)).

Proof: Call the “configuration” of a machine M on input x a description of the state of M ,
the position of the input tape, and the contents of the work tape at a given time. Write down
c1, c2, . . . , ct where ci is the configuration at time i and t is the running time of M(x). No two ci

can be equal, or else the machine would be in a loop, since the ci completely describes the present,
and therefore the future, of the computation. Now, the number of possible configurations is simply
the product of the number of states, the number of positions on the input tape, and the number of
possible contents of the work tape (which itself depends on the number of allowable positions on
the input tape). This is

O(1) · n · |Σ|s(n) = 2O(s(n))+log n = 2O(s(n))

Since we cannot visit a configuration twice during the computation, the computation must
therefore finish in 2O(s(n)) steps. �

NL is the set of decision problems solvable by a non-deterministic machine using O(log n)
space. NPSPACE is the set of decision problems solvable by a non-deterministic machine using
polynomial space. In general we denote by NSPACE(s(n)) the set of decision problems that can
be solved by non-deterministic machines that use at most s(n) bits of space on inputs of length n.

Analogously with time-bounded complexity classes, we could think that NL is exactly the set of
decision problems that have “solutions” that can verified in log-space. If so, NL would be equal to
NP, since there is a log-space algorithm V that verifies solutions to SAT. However, this is unlikely
to be true, because NL is contained in P. An intuitive reason why not all problems with a log-space
“verifier” can be simulated in NL is that an NL machine does not have enough memory to keep
track of all the non-deterministic choices that it makes.

1

Theorem 2 NL ⊆ P.

Proof: Let L be a language in NL and let M be a non-deterministic log-space machine for L.
Consider a computation of M(x). As before, there are 2O(s(n)) = nO(1) possible configurations.
Consider a directed graph in which vertices are configurations and edges indicate transitions from
one state to another which the machine is allowed to make in a single step (as determined by its δ).
This graph has polynomially many vertices, so in polynomial time we can do a depth-first search
to see whether there is a path from the initial configuration that eventually leads to acceptance.
This describes a polynomial-time algorithm for deciding L, so we’re done. �

2 Reductions in NL

We would like to introduce a notion of completeness in NL analogous to the notion of completeness
that we know for the class NP. A first observation is that, in order to have a meaningful notion of
completeness in NL, we cannot use polynomial-time reductions, otherwise any NL problem having
at least a YES instance and at least a NO instance would be trivially NL-complete. To get a more
interesting notion of NL-completeness we need to turn to weaker reductions. In particular, we
define log space reductions as follows:

Definition 3 Let A and B be decision problems. We say A is log space reducible to B, A ≤log B,
if ∃ a function f computable in log space such that x ∈ A iff f(x) ∈ B, and B ∈ L.

Theorem 4 If B ∈ L, and A ≤log B, then A ∈ L.

Proof: We consider the concatenation of two machines: Mf to compute f , and MB to solve B.
If our resource bound was polynomial time, then we would use Mf (x) to compute f(x), and then
run MB on f(x). The composition of the two procedures would given an algorithm for A, and if
both procedures run in polynomial time then their composition is also polynomial time. To prove
the theorem, however, we have to show that if Mf and MB are log space machines, then their
composition can also be computed in log space.

Recall the definition of a Turing machine M that has a log space complexity bound: M has
one read-only input tape, one write-only output tape, and uses a log space work tape. A naive
implementation of the composition of Mf and MB would be to compute f(x), and then run MB on
input f(x); however f(x) needs to be stored on the work tape, and this implementation does not
produce a log space machine. Instead we modify Mf so that on input x and i it returns the i-th bit
of f(x) (this computation can still be carried out in logarithmic space). Then we run a simulation
of the computation of MB(f(x)) by using the modified Mf as an “oracle” to tell us the value of
specified positions of f(x). In order to simulate MB(f(x)) we only need to know the content of one
position of f(x) at a time, so the simulation can be carried with a total of O(log |x|) bits of work
space. �

Using the same proof technique, we can show the following:

Theorem 5 if A ≤log B,B ≤log C, then A ≤log C.

3 NL Completeness

Armed with a definition of log space reducibility, we can define NL-completeness.

2

Definition 6 A is NL-hard if ∀B ∈ NL, B ≤log A. A is NL-complete if A ∈ NL and A is
NL-hard.

We now introduce a problem STCONN (s,t-connectivity) that we will show is NL-complete. In
STCONN, given in input a directed graph G(V,E) and two vertices s, t ∈ V , we want to determine
if there is a directed path from s to t.

Theorem 7 STCONN is NL-complete.

Proof:

1. STCONN ∈ NL.

On input G(V,E), s,t, set p to s. For i = 1 to |V |, nondeterminsitically, choose a neighboring
vertex v of p. Set p = v. If p = t, accept and halt. Reject and halt if the end of the for loop
is reached. The algorithm only requires O(log n) space.

2. STCONN is NL-hard.

Let A ∈NL, and let MA be a non-deterministic logarithmic space Turing Machine for A. On
input x, construct a directed graph G with one vertex for each configuration of M(x), and
an additional vertex t. Add edges (ci, cj) if M(x) can move in one step from ci to cj . Add
edges (c, t) from every configuration that is accepting, and let s be the start configuration.
M accepts x iff some path from s to t exists in G. The above graph can be constructed from
x in log space, because listing all nodes requires O(log n) space, and testing valid edges is also
easy.

�

4 Savitch’s Theorem

What kinds of tradeoffs are there between memory and time? STCONN can be solved determinis-
tically in linear time and linear space, using depth-first-search. Is there some sense in which this is
optimal? Nondeterministically, we can search using less than linear space. Can searching be done
deterministically in less than linear space?

We will use Savitch’s Theorem to show that STCONN can be solved deterministically in
O(log2 n), and that every NL problem can be solved deterministically in O(log2 n) space. In
general, if A is a problem that can be solved nondeterministically with space s(n) ≥ log n, then it
can be solved deterministically with O(s2(n))space.

Theorem 8 STCONN can be solved deterministically in O(log2 n) space.

Proof: Consider a graph G(V,E), and vertices s, t. We define a recursive function REACH(u, v, k)
that accepts and halts iff v can be reached from u in ≤ k steps. If k = 1, then REACH
accepts iff (u, v) is an edge. If k ≥ 2,∀w ∈ V − {u, v}, compute REACH(u,w, b k/2 c) and
REACH(w, v, d k/2 e). If both accept and halt, accept. Else, reject.

Let S(k) be the worst-case space use of REACH(·, ·, k). The space required for the base case
S(1) is a counter for tracking the edge, so S(1) = O(log n). In general, S(k) = O(log n) + S(k/2)
for calls to REACH and for tracking w. So, S(k) = O(log k ∗ log n). Since k ≤ n, the worst-case
space use of REACH is O(log2 n). �

Essentially the same proof applies to arbitrary non-deterministic space-bounded computations.
This result was proved in [Sav70]

3

Theorem 9 (Savitch’s Theorem) For every function s(n) computable in space O(s(n)),
NSPACE(s) = SPACE(O(s2))

Proof: We begin with a nondeterministic machine M , which on input x uses s(|x|) space. We
define REACH(ci, cj , k), as in the proof of Theorem 8, which accepts and halts iff M(x) can go
from ci to cj in ≤ k steps. We compute REACH(c0, cacc, 2O(s|x|)) for all accepting configurations
cacc. If there is a call of REACH which accepts and halts, then M accepts. Else, M rejects. If
REACH accepts and halts, it will do so in ≤ 2O(|x|) steps.

Let SR(k) be the worst-case space used by REACH(·, ·, k): SR(1) = O(s(n)), SR(k) = O(s(n))+
SR(k/2). This solves SR = s(n) ∗ log k, and, since k = 2O(s(n)), we have SR = O(s2(n)). �

Comparing Theorem 8 to depth-first-search, we find that we are exponentially better in space
requirements, but we are no longer polynomial in time.

Examining the time required, if we let t(k) be the worst-case time used by REACH(·, ·, k), we
see t(1) = O(n + m), and t(k) = n(2 ∗ T (k/2)), which solves to t(k) = nO(log k) = O(nO(log n)),
which is super-polynomial. Savitch’s algorithm is still the one with the best known space bound.
No known algorithm achieves polynomial log space and polynomial time simultaneously, although
such an algorithm is known for undirected connectivity.

5 Undirected Connectivity

In the undirected s− t connectivity problem (abbreviated ST-UCONN) we are given an undirected
graph G = (V,E) and two vertices s, t ∈ V , and the question is whether that is a path between s
and t in G.

While this problem is not known to be complete for NL, and it probably is not, ST-UCONN
is complete for the class SL of decision problems that are solvable by symmetric non-deterministic
machines that use O(log n) space. A non-deterministic machine is symmetric if whenever it can
make a transition from a configuration s to a transition s′ then the transition from s′ to s is also
possible. The proof of SL-completeness of ST-UCONN is identical to the proof of NL-completeness
of ST-CONN except for the additional observation that the transition graph of a symmetric machine
is undirected.

6 Randomized Log-space

We now wish to introduce randomized space-bounded Turing machine. For simplicity, we will only
introduce randomized machines for solving decision problems. In addition to a read-only input
tape and a read/write work tape, such machines also have a read-only random tape to which they
have one-way access, meaning that the head on that tape can only more, say, left-to-right. For
every fixed input and fixed content of the random tape, the machine is completely deterministic,
and either accepts or rejects. For a Turing machine M , an input x and a content r of the random
tape, we denote by M(r, x) the outcome of the computation.

We say that a decision problem L belongs to the class RL (for randomized log-space) if there
is a probabilistic Turing machine M that uses O(log n) space on inputs of length n and such that

• For every x ∈ L, Prr[M(r, x) accepts] ≥ 1/2

• For every x 6∈ L, Prr[M(r, x) accepts] = 0.

4

It is easy to observe that any constant bigger than 0 and smaller than 1 could be equivalently
used instead of 1/2 in the definition above. It also follows from the definition that L ⊆ RL ⊆ NL.

The following result shows that, indeed, L ⊆ SL ⊆ RL ⊆ NL.

Theorem 10 The problem ST-UCONN is in RL.

We will not give a proof of the above theorem, but just describe the algorithm. Given an
undirected graph G = (V,E) and two vertices s, t, the algorithm performs a random walk of length
100 · n3 starting from s. If t is never reached, the algorithm rejects.

input: G = (V,E), s, t

v ← s
for i← 1 to 100 · n3

pick at random a neighbor w of v
if w = t then halt and accept
v ← w reject

The analysis of the algorithm is based on the fact that if we start a random walk from a vertex s
of an undirected vertex G, then all vertices in the connected component of s are likely to be visited
at least once after Θ(n3) steps.

By Savitch’s theorem, every RL algorithm can be simulated deterministically using O((log n)2)
space. An algorithm due to Saks and Zhou [SZ95], however, does much better and shows a deter-
ministic simulation of RL that requires only O((log n)3/2) space. There has been no improvement
to this general result in the past 12 years.

For the particular problem ST-UCONN, instead, the story is much more interesting. Nisan
[Nis94] proved that there exists an algorithm running in polynomial time and O(log2 n) space (but
the polynomial has very high degree). This is better than Savitch’s algorithm that uses O(log2 n)
space and nO(log n) time. Nisan’s result actually applies to all of RL. Nisan, Szemeredy and
Wigderson [NSW92] then applied some of Nisan’s techniques to prove that ST-UCONN can be
solved in space O((log n)3/2) and superpolynomial time. (As mentioned before, the same bound
was then extended to all of RL by Saks and Zhou.) This was improved to O(log4/3 n) space and
superpolynomial time complexity by Armoni, Ta-Shma, Nisan and Wigderson [ATSWZ00]. Finally,
Omer Reingold [Rei05] proved that ST-UCONN can be solved in space O(log n) and polynomial
time. In terms of complexity classes, this shows that SL = L.

7 NL = coNL

In order to prove that these two classes are the same, we will show that there is an NL Turing
machine which solves stconn. stconn is the problem of deciding, given a directed graph G,
together with special vertices s and t, whether t is not reachable from s. Note that stconn is
coNL-complete.

Once we have the machine, we know that coNL ⊆ NL, since any language A in coNL can
be reduced to stconn, and since stconn has been shown to be in NL (by the existence of our
machine), so is A. Also, NL ⊆ coNL, since if stconn ∈ NL, by definition stconn ∈ coNL, and
since stconn is NL-complete, this means that any problem in NL can be reduced to it and so is
also in coNL. Hence NL = coNL. This result was proved independently in [Imm88] and [Sze88].

5

7.1 A simpler problem first

Now all that remains to be shown is that this Turing machine exists. First we will solve a simpler
problem than stconn. We will assume that in addition to the usual inputs G, s and t, we also
have an input r, which we will assume is equal to the number of vertices reachable from s in G,
including s.

Given these inputs, we will construct a non-deterministic Turing machine which decides whether
t is reachable from s by looking at all subsets of r vertices in G, halting with yes if it sees a subset
of vertices which are all reachable from s but do not include t, and halting with no otherwise. Here
is the algorithm:

input: G = (V,E), s, t, r
output: yes if it discovers that t is not reachable from s, and no otherwise
assumption: there are exactly r distinct vertices reachable from s

c← 0
for all v ∈ (V − {t}) do

non-deterministically guess if v is reachable from s
if guess = YES then

non-deterministically guess the distance k from s to v
p← s
for i← 1 to k do

non-deterministically pick a neighbor q of p
p← q

if p 6= v, reject
c← c + 1

if c = r then return yes, otherwise return no

It is easy to verify that this algorithm is indeed in NL. The algorithm only needs to maintain the
five variables c, k, p, q, v, and each of these variables can be represented with log |V | bits.

Regarding correctness, notice that, in the algorithm, c can only be incremented for a vertex v
that is actually reachable from s. Since there are assumed to be exactly r such vertices, c can be
at most r at the end of the algorithm, and if it is exactly r, that means that there are r vertices
other than t which are reachable from s, meaning that t by assumption cannot be reachable form
s. Hence the algorithm accepts if and only if it discovers that t is not reachable from s.

7.2 Finding r

Now we need to provide an NL-algorithm that finds r. Let’s first try this algorithm:

input: G = (V,E), s
output: the number of vertices reachable from s (including s in this count)

c← 0
for all v ∈ V do

non-deterministically guess if v is reachable from s in k steps
if guess = yes then

p← s

6

for i← 1 to k do
non-deterministically guess a neighbor q of p (possibly not moving at all)
p← q

if p 6= v reject
c← c + 1

return c

This algorithm has a problem. It will only return a number c which is at most r, but we
need it to return exactly r. We need a way to force it to find all vertices which are reachable from
s. Towards this goal, let’s define rk to be the set of vertices reachable from s in at most k steps.
Then r = rn−1, where n is the number of vertices in G. The idea is to try to compute rk from
rk−1 and repeat the procedure n − 1 times, starting from r0 = 1. Now here is another try at an
algorithm:

input: G = (V,E), s, k, rk−1

output: the number of vertices reachable from s in at most k steps (including s in this count)
assumption: rk−1 is the exact number of vertices reachable from s in at most k − 1 steps

c← 0
for all v ∈ V do

d← 0
flag ← FALSE
for all w ∈ V do

p← s
for i← 1 to k − 1 do

non-deterministically pick a neighbor q of p (possibly not moving at all)
p← q

if p = w then
d← d + 1
if v is a neighbor of w, or if v = w then

flag ← TRUE
if d < rk−1 reject
if flag then c← c + 1

return c

Here is the idea behind the algorithm: for each vertex v, we need to determine if it is reachable
from s in at most k steps. To do this, we can loop over all vertices which are a distance at most
k − 1 from s, checking to see if v is either equal to one of these vertices or is a neighbor of one of
them (in which case it would be reachable in exactly k steps). The algorithm is able to force all
vertices of distance at most k − 1 to be considered because it is given rk−1 as an input.

Now, putting this algorithm together with the first one listed above, we have shown that
stconn ∈ NL, implying that NL = coNL. In fact, the proof can be generalized to show that if
a decision problem A is solvable in non-deterministic space s(n) = Ω(log n), then A is solvable in
non-deterministic space O(s(n)).

7

References

[ATSWZ00] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, and Shiyu Zhou. An o(log(n)4/3)
space algorithm for (s, t) connectivity in undirected graphs. Journal of the ACM,
47(2):294–311, 2000.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM Jour-
nal on Computing, 17:935–938, 1988.

[Nis94] N. Nisan. RL ⊆ SC. Computational Complexity, 4(1), 1994.

[NSW92] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1.5 n)
space. In Proceedings of the 33rd IEEE Symposium on Foundations of Computer
Science, pages 24–29, 1992.

[Rei05] Omer Reingold. Undirected ST-connectivity in log-space. In Proceedings of the 37th
ACM Symposium on Theory of Computing, pages 376–385, 2005.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[SZ95] M. Saks and S. Zhou. RSPACE(S) ⊆ DSPACE(S3/2). In Proceedings of the 36th
IEEE Symposium on Foundations of Computer Science, pages 344–353, 1995.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26:279–284, 1988.

8

