Practice Midterm 1

- 1. State whether each of the following statements is true. In addition, give a short proof (2-3 lines are sufficient) if the statement is true, and give a counterexample otherwise.
 - (a) If $L_1, L_2, \ldots, L_{172}$ are all regular languages, then the language $\bigcap_{i=1}^{172} L_i$ is regular.
 - (b) If L_1, L_2, L_3, \ldots is an infinite sequence of regular languages, then the language $\bigcap_{i=1}^{\infty} L_i$ is regular.
- $2. \ Let$

 $L = \{(\langle D \rangle, w) \mid D \text{ is a DFA over the binary alphabet } \{0, 1\} \text{ that accepts } w\}$

(Assume that the encoding of DFAs also uses the binary alphabet.)

- (a) Show that L is not regular.
- (b) Show that L is decidable.
- 3. Consider the language

$$INT_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle : L(M_1) \cap L(M_2) \neq \emptyset \}.$$

(Thus, INT_{TM} is the language associated with the problem of deciding whether, for two given Turing machines M_1 and M_2 , there is some string that is accepted by both machines.)

- (a) Show that INT_{TM} is Turing recognizable.
- (b) Show that INT_{TM} is not decidable.
- 4. Let $S = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \{\langle M \rangle\}\}$. Show that neither S nor \overline{S} is Turing-recognizable.