
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Practice
Midterm 2
Professor Luca Trevisan 4/10/2007

Solutions to Practice Midterm 2

1. Consider the following time-bounded variant of Kolmogorov complexity, written KL(x), and
defined to be the shortest string 〈M,w, t〉 where t is a positive integer written in binary, and
M is a TM that on input w halts with x on its tape within t steps.

(a) Show that KL(x) is computable (by describing an algorithm that on input x outputs
KL(x)).

(b) Prove that for all positive integers n, there exists a string x of length n such that
K(x) = O(log n) and KL(x) ≥ n. (In fact, there is an algorithm that on input n finds
such a x.)

Solution Outline:

(a) Here’s an algorithm for computing KL(x). On input x,

1. Go through all binary strings s in lexicographic order, and for each such s, parse s
as 〈M,w, t〉 for some TM M , input w and integer t. If s fails to parse, move to the
next such s.

2. Simulate M on input w for up to t steps. If it halts within t steps with x on its
tape, output |s|.

(b) By a counting argument, it is easy to see that for every n, there exists a string xn of
length at least n such that KL(xn) ≥ n. Choose xn to be the lexicographically first such
string. Now, consider the machine T that on input an integer n written as a binary
string, enumerates over all binary strings s in lexicographic order, computes KL(s), and
outputs the first s such that KL(s) ≥ n. Then, T (n) = xn, so 〈T, n〉 is a description for
xn and thus K(xn) = O(log n).

2. (Sipser 7.41) For a cnf-formula φ with m variables and c clauses (that is, φ is the AND
of c clauses, each of which is an OR of several variables), show that you can construct
in polynomial time an NFA with O(cm) states that accepts all nonsatisfying assignments,
represented as Boolean strings of length m. Conclude that the problem of minimizing NFAs
(that is, on input a NFA, find the NFA with the smallest number of states that recognizes the
same language) cannot be done in polynomial time unless P = NP.

Solution Outline: On input φ, construct a NFA N that nondeterministically picks one of
the c clauses (via ε-transitions), reads the input of length m, and accepts if it does not satisfy
the clause, and rejects otherwise. In addition, N also accepts all inputs of length not equal to
m. For each clause, we need O(m) states, so N has O(cm) states. It is clear that N can be
computed in polynomial time. In addition, for any nonsatisfying assignment a, at least one
clause is not satisfied, so N accepts a. Conversely, if N accepts a, some clause is not satisfied,
so a is a nonsatisfying assignment. Hence, N accepts all the nonsatisfying assignments of φ.

Next, suppose the problem of minimizing NFAs can be done in polynomial time. Then, con-
sider the polynomial-time algorithm that on input a 3cnf formula φ with m clauses, constructs

1

a NFA N that accepts all the nonsatisfying assignments of φ. Observe that N accepts all bi-
nary strings iff φ is not satisfiable. Now, run the NFA minimizing algorithm to produce a new
NFA N ′. If N ′ contains exactly one state and accepts all binary strings, reject φ; otherwise,
accept φ. This yields a polynomial-time algorithm for 3SAT , and hence P = NP.

3. (Sipser 7.33) Prove that the following language is NP-hard

D = {〈p〉 | p is a polynomial in several variables having an integral root}

(The problem is in fact, undecidable. Turing first published the notion of a Turing machine
and formalization of algorithms to prove the undecidability of this very problem.)

Solution Outline: We reduce 3SAT to D as follows. For each clause ci, we define a
polynomial pi(x1, . . . , xn) such that pi(x1, . . . , xn) = 0 iff there is a way of assigning values
0/1 to the variables in ci such that the clause is satisfied. For (say) ci = (x2 ∨ x5 ∨ x7), we
have pi(x1, . . . , xn) = (1−x2)x5(1−x7), which is zero if and only if x2 = 1, x5 = 0 or x7 = 1.
Interpreting 1 as true and 0 as false, this is consistent with the formula.

We then define P (x1, . . . , xn) =
∑m

i=1(pi(x1, . . . , xn))2, where m is the total number of clauses.
Since, P can be zero only when each of the individual pi’s is zero, an integral root of P gives
a satisfying assignment to the given formula and vice-versa.

2

