Solutions to Practice Midterm 2

1. Consider the following time-bounded variant of Kolmogorov complexity, written $K_{L}(x)$, and defined to be the shortest string $\langle M, w, t\rangle$ where t is a positive integer written in binary, and M is a TM that on input w halts with x on its tape within t steps.
(a) Show that $K_{L}(x)$ is computable (by describing an algorithm that on input x outputs $\left.K_{L}(x)\right)$.
(b) Prove that for all positive integers n, there exists a string x of length n such that $K(x)=O(\log n)$ and $K_{L}(x) \geq n$. (In fact, there is an algorithm that on input n finds such a x.)

Solution Outline:

(a) Here's an algorithm for computing $K_{L}(x)$. On input x,

1. Go through all binary strings s in lexicographic order, and for each such s, parse s as $\langle M, w, t\rangle$ for some TM M, input w and integer t. If s fails to parse, move to the next such s.
2. Simulate M on input w for up to t steps. If it halts within t steps with x on its tape, output $|s|$.
(b) By a counting argument, it is easy to see that for every n, there exists a string x_{n} of length at least n such that $K_{L}\left(x_{n}\right) \geq n$. Choose x_{n} to be the lexicographically first such string. Now, consider the machine T that on input an integer n written as a binary string, enumerates over all binary strings s in lexicographic order, computes $K_{L}(s)$, and outputs the first s such that $K_{L}(s) \geq n$. Then, $T(n)=x_{n}$, so $\langle T, n\rangle$ is a description for x_{n} and thus $K\left(x_{n}\right)=O(\log n)$.
3. (Sipser 7.41) For a cnf-formula ϕ with m variables and c clauses (that is, ϕ is the AND of c clauses, each of which is an OR of several variables), show that you can construct in polynomial time an NFA with $O(\mathrm{~cm})$ states that accepts all nonsatisfying assignments, represented as Boolean strings of length m. Conclude that the problem of minimizing NFAs (that is, on input a NFA, find the NFA with the smallest number of states that recognizes the same language) cannot be done in polynomial time unless $\mathbf{P}=\mathbf{N P}$.
Solution Outline: On input ϕ, construct a NFA N that nondeterministically picks one of the c clauses (via ϵ-transitions), reads the input of length m, and accepts if it does not satisfy the clause, and rejects otherwise. In addition, N also accepts all inputs of length not equal to m. For each clause, we need $O(m)$ states, so N has $O(c m)$ states. It is clear that N can be computed in polynomial time. In addition, for any nonsatisfying assignment a, at least one clause is not satisfied, so N accepts a. Conversely, if N accepts a, some clause is not satisfied, so a is a nonsatisfying assignment. Hence, N accepts all the nonsatisfying assignments of ϕ.
Next, suppose the problem of minimizing NFAs can be done in polynomial time. Then, consider the polynomial-time algorithm that on input a 3 cnf formula ϕ with m clauses, constructs
a NFA N that accepts all the nonsatisfying assignments of ϕ. Observe that N accepts all binary strings iff ϕ is not satisfiable. Now, run the NFA minimizing algorithm to produce a new NFA N^{\prime}. If N^{\prime} contains exactly one state and accepts all binary strings, reject ϕ; otherwise, accept ϕ. This yields a polynomial-time algorithm for $3 S A T$, and hence $\mathbf{P}=\mathbf{N P}$.
4. (Sipser 7.33) Prove that the following language is NP-hard

$$
D=\{\langle p\rangle \mid p \text { is a polynomial in several variables having an integral root }\}
$$

(The problem is in fact, undecidable. Turing first published the notion of a Turing machine and formalization of algorithms to prove the undecidability of this very problem.)
Solution Outline: We reduce 3SAT to D as follows. For each clause c_{i}, we define a polynomial $p_{i}\left(x_{1}, \ldots, x_{n}\right)$ such that $p_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ iff there is a way of assigning values $0 / 1$ to the variables in c_{i} such that the clause is satisfied. For (say) $c_{i}=\left(x_{2} \vee \bar{x}_{5} \vee x_{7}\right)$, we have $p_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(1-x_{2}\right) x_{5}\left(1-x_{7}\right)$, which is zero if and only if $x_{2}=1, x_{5}=0$ or $x_{7}=1$. Interpreting 1 as true and 0 as false, this is consistent with the formula.
We then define $P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m}\left(p_{i}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$, where m is the total number of clauses. Since, P can be zero only when each of the individual p_{i} 's is zero, an integral root of P gives a satisfying assignment to the given formula and vice-versa.

