
U.C. Berkeley — CS172: Automata, Computability and Complexity Practice Final
Professor Luca Trevisan 5/3/2007

Practice Final

1. (Sipser 1.45) Let A/B = {w | wx ∈ A for some x ∈ B}. Show that if A is regular and B is
any language, then A/B is regular.

Solution Outline: Let M = (Q,Σ, δ, q0, F) be the DFA for A, where Σ is the union of the
alphabets for A and B. We define F ′ as

F ′ = {q ∈ Q | ∃x ∈ B s.t. M goes from q to some state in F on reading x}

Then M ′ = (Q,Σ, δ, q0, F
′) is a DFA for A/B. Note that it might be hard to construct M ′

depending on how hard it is to decide B, but we are only required to show its existence.

2. Let M be a 1-tape Turing machine with q states, and let w be a string of length n. Prove
that if on input w the machine M does not move its head left in the first n + q + 1 steps,
then it never moves its head left on this input.
Clarification: Assume that the machine only moves its head left or right (i.e. it cannot choose
to stay put).

Solution Outline: After n− 1 steps, the head will have moved across the entire input and
the machine will just read blank cells for the next q + 2 steps (since its head is only moving
right). However, then there must exist a state q0 such that the machine enters q0 twice during
these q + 2 steps. But then, its configuration is exactly the same when it comes to q0 the
second time as it was the first time (input cell = blank, state = q0). But if reading a blank
cell on q0 brings the machine back to q0 again, it will go into an infinite loop. Since the
machine moved its head right during the first run of this loop, it will always move its head
right subsequently.

3. A boolean formula is said to be in Monotone 2-CNF if it is the conjunction of clauses, each of
which has exactly 2 literals and all the literals in the formula are positive (i.e. no negations).
Note that such a formula can be easily satisfied by setting all variables to true.

Consider the following version of the satisfiability problem for Monotone 2-CNF formulas:

k −MON − 2SAT = {〈φ, k〉 | φ is in Monotone 2-CNF and can be satisfied
by setting at most k variables to true}

Prove that k-MON-2SAT is NP-complete.

Solution Outline: k-MON-2SAT is easily seen to be in NP, since given an assignment
with at most k variables set to true. we can easily verify if it satisfies the formula. To see
the NP-hardness, we reduce VERTEX COVER to k-MON-2SAT. Let G = (V,E) be a graph.
For each vertex v ∈ V , we define a variable xv (with the intention that xv = true iff v is in
the vertex cover). Since, for each edge (u, v), at least one vertex must be in the vertex cover,
we add the clauses (xu ∨ xv) for each edge (u, v) ∈ E. The formula ϕ is thus given by

ϕ =
∧

(u,v)∈E

(xu ∨ xv)

Then the formula ϕ has a satisfying assignment with k variables set to true if and only if G
has a vertex cover of size k.

1

4. Define

Cycle-Length = {〈G, c〉 | 3 ≤ c ≤ |V (G)|, G is a directed graph and
the length of the shortest cycle in G is c.}

Prove that Cycle-Length is NL-complete.

Solution Outline: To see the NL hardness, we reduce an instance of PATH to Cycle-Length.
Given 〈G = (V,E), s, t〉 as an instance of PATH, we construct n copies G1, . . . , Gn of the
graph G. However, we delete all the edges within each copy and instead add the edges
(ui, vi+1) ∀(u, v) ∈ E∀i ∈ {1, . . . , n − 1} and (ui, ui+1) ∀u ∈ V ∀i ∈ {1, . . . , n − 1}. Thus, we
connect each vertex in the ith copy to itself and all its neighbors in the (i + 1)th copy. Note
that this new graph (call it H) has no cycles (since all edges go into a higer numbered copy)
. Finally, we add the edge (tn, s1). This edge will create a cycle (of length n) if and only if
it is possible to reach tn from s1 in H. But then, because of the way edges were added, this
also gives a path from s to t in G of length at most n. Thus, G has an s− t path if and only
if the shortest cycle in H is of lenght n.

To see that Cycle-Length ∈ NL, consider the following languages:

• A1 = {〈G, c1〉 | G has a cycle of length at most c1}
• A2 = {〈G, c2〉 | G has no cycle of length less than c2}

A1 ∈ NL since we can guess a cycle of length c1 by moving from vertex to vertex. Also,
A2 = A2 ∈ coNL = NL. Since 〈G, c〉inCycle-Length if and only if 〈G, c〉 ∈ A1 and
〈G, c− 1〉 ∈ A2, we have Cycle-Length ∈ NL.

5. Consider the language

EQNFA = {〈N,N ′〉 | N,N ′ are NFAs with the same alphabet and L(N) = L(N ′)}

Show that EQNFA ∈ PSPACE.
(Hint: Can you convert this to an appropriate reachability problem?)

Solution Outline: Suppose N and N ′ both have at most n states. We can then convert
them into DFAs DN and DN ′ with at most m = 2n states each using space polynomial
in n. Finally, we can construct a DFA S, which is the product of DN and DN ′ (with at
most m2 = 22n states) and accepts L(DN)∆L(DN ′) (strings that are in exactly one of the
languages). Now, L(N) = L(N ′) iff L(S) = ∅ i.e. none of the final states are reachable from
the start state in S.

Since this is a reachability problem, it can be decided nondeterministically using space loga-
rithmic in the size of the graph (because PATH ∈ NL). Thus, this problem can be decided
in NSPACE(log(m2)) = NSPACE(n) ⊆ SPACE(n2) ⊆ PSPACE.

Madhur’s Note: Please ingnore the next problem. I think there is a mistake in the problem
as stated - apologies.

6. We define the class Universal Simulator Perfect Zero-Knowledge (USPZK) as the class of zero
knowledge protocols for which there is a single universal simulator U , which given the input
to the protocol and the code of the any verifier, simulates the verifier’s view of the interaction.

2

Sipser gives the following interactive protocol for Graph Non-Ispmorphism, which is is actually
in Honest Verifier Perfect Zero Knowledge:

Input: Two graphs G1 and G2.
Verifier: Picks a random i ∈ {1, 2} and a random permutation π. Sends H = π(Gi).
Prover: Sends i i.e. identifies if H is a permutated copy of G1 or G2.

Prove that if the above protocol is in USPZK i.e. there exists a single universal simulator for
all verifiers (not just honest ones), then there is a randomized polynomial time algorithm for
Graph Isomorphism.

3

