Practice Final

1. (Sipser 1.45) Let $A / B=\{w \mid w x \in A$ for some $x \in B\}$. Show that if A is regular and B is any language, then A / B is regular.
Solution Outline: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the DFA for A, where Σ is the union of the alphabets for A and B. We define F^{\prime} as

$$
F^{\prime}=\{q \in Q \mid \exists x \in B \text { s.t. } M \text { goes from } q \text { to some state in } F \text { on reading } x\}
$$

Then $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ is a DFA for A / B. Note that it might be hard to construct M^{\prime} depending on how hard it is to decide B, but we are only required to show its existence.
2. Let M be a 1 -tape Turing machine with q states, and let w be a string of length n. Prove that if on input w the machine M does not move its head left in the first $n+q+1$ steps, then it never moves its head left on this input.
Clarification: Assume that the machine only moves its head left or right (i.e. it cannot choose to stay put).
Solution Outline: After $n-1$ steps, the head will have moved across the entire input and the machine will just read blank cells for the next $q+2$ steps (since its head is only moving right). However, then there must exist a state q_{0} such that the machine enters q_{0} twice during these $q+2$ steps. But then, its configuration is exactly the same when it comes to q_{0} the second time as it was the first time (input cell $=$ blank, state $=q_{0}$). But if reading a blank cell on q_{0} brings the machine back to q_{0} again, it will go into an infinite loop. Since the machine moved its head right during the first run of this loop, it will always move its head right subsequently.
3. A boolean formula is said to be in Monotone 2-CNF if it is the conjunction of clauses, each of which has exactly 2 literals and all the literals in the formula are positive (i.e. no negations). Note that such a formula can be easily satisfied by setting all variables to true.
Consider the following version of the satisfiability problem for Monotone 2-CNF formulas:

$$
\begin{aligned}
k-M O N-2 S A T= & \{\langle\phi, k\rangle \mid \phi \text { is in Monotone 2-CNF and can be satisfied } \\
& \text { by setting at most } k \text { variables to true }\}
\end{aligned}
$$

Prove that k-MON-2SAT is NP-complete.
Solution Outline: k-MON-2SAT is easily seen to be in NP, since given an assignment with at most k variables set to true. we can easily verify if it satisfies the formula. To see the NP-hardness, we reduce VERTEX COVER to k-MON-2SAT. Let $G=(V, E)$ be a graph. For each vertex $v \in V$, we define a variable x_{v} (with the intention that $x_{v}=$ true iff v is in the vertex cover). Since, for each edge (u, v), at least one vertex must be in the vertex cover, we add the clauses ($x_{u} \vee x_{v}$) for each edge $(u, v) \in E$. The formula φ is thus given by

$$
\varphi=\bigwedge_{(u, v) \in E}\left(x_{u} \vee x_{v}\right)
$$

Then the formula φ has a satisfying assignment with k variables set to true if and only if G has a vertex cover of size k.

$$
\begin{aligned}
\text { Cycle-Length }= & \{\langle G, c\rangle|3 \leq c \leq|V(G)|, G \text { is a directed graph and } \\
& \text { the length of the shortest cycle in } G \text { is } c .\}
\end{aligned}
$$

Prove that Cycle-Length is NL-complete.
Solution Outline: To see the NL hardness, we reduce an instance of PATH to Cycle-Length. Given $\langle G=(V, E), s, t\rangle$ as an instance of PATH, we construct n copies G_{1}, \ldots, G_{n} of the graph G. However, we delete all the edges within each copy and instead add the edges $\left(u_{i}, v_{i+1}\right) \forall(u, v) \in E \forall i \in\{1, \ldots, n-1\}$ and $\left(u_{i}, u_{i+1}\right) \forall u \in V \forall i \in\{1, \ldots, n-1\}$. Thus, we connect each vertex in the i th copy to itself and all its neighbors in the $(i+1)$ th copy. Note that this new graph (call it H) has no cycles (since all edges go into a higer numbered copy) . Finally, we add the edge $\left(t_{n}, s_{1}\right)$. This edge will create a cycle (of length n) if and only if it is possible to reach t_{n} from s_{1} in H. But then, because of the way edges were added, this also gives a path from s to t in G of length at most n. Thus, G has an $s-t$ path if and only if the shortest cycle in H is of lenght n.
To see that Cycle-Length $\in \mathbf{N L}$, consider the following languages:

- $A_{1}=\left\{\left\langle G, c_{1}\right\rangle \mid G\right.$ has a cycle of length at most $\left.c_{1}\right\}$
- $A_{2}=\left\{\left\langle G, c_{2}\right\rangle \mid G\right.$ has no cycle of length less than $\left.c_{2}\right\}$
$A_{1} \in \mathbf{N L}$ since we can guess a cycle of length c_{1} by moving from vertex to vertex. Also, $A_{2}=\overline{A_{2}} \in \mathbf{c o N L}=\mathbf{N L}$. Since $\langle G, c\rangle$ inCycle-Length if and only if $\langle G, c\rangle \in A_{1}$ and $\langle G, c-1\rangle \in A_{2}$, we have Cycle-Length $\in \mathbf{N L}$.

5. Consider the language

$$
E Q_{N F A}=\left\{\left\langle N, N^{\prime}\right\rangle \mid N, N^{\prime} \text { are NFAs with the same alphabet and } L(N)=L\left(N^{\prime}\right)\right\}
$$

Show that $E Q_{N F A} \in$ PSPACE.

(Hint: Can you convert this to an appropriate reachability problem?)
Solution Outline: Suppose N and N^{\prime} both have at most n states. We can then convert them into DFAs D_{N} and $D_{N^{\prime}}$ with at most $m=2^{n}$ states each using space polynomial in n. Finally, we can construct a DFA S, which is the product of D_{N} and $D_{N^{\prime}}$ (with at most $m^{2}=2^{2 n}$ states) and accepts $L\left(D_{N}\right) \Delta L\left(D_{N^{\prime}}\right)$ (strings that are in exactly one of the languages). Now, $L(N)=L\left(N^{\prime}\right)$ iff $L(S)=\emptyset$ i.e. none of the final states are reachable from the start state in S.

Since this is a reachability problem, it can be decided nondeterministically using space logarithmic in the size of the graph (because $P A T H \in \mathbf{N L}$). Thus, this problem can be decided in $N S P A C E\left(\log \left(m^{2}\right)\right)=N S P A C E(n) \subseteq S P A C E\left(n^{2}\right) \subseteq$ PSPACE.

Madhur's Note: Please ingnore the next problem. I think there is a mistake in the problem as stated - apologies.
6. We define the class Universal Simulator Perfect Zero-Knowledge (USPZK) as the class of zero knowledge protocols for which there is a single universal simulator U, which given the input to the protocol and the code of the any verifier, simulates the verifier's view of the interaction.

Sipser gives the following interactive protocol for Graph Non-Ispmorphism, which is is actually in Honest Verifier Perfect Zero Knowledge:

Input: Two graphs G_{1} and G_{2}.
Verifier: Picks a random $i \in\{1,2\}$ and a random permutation π. Sends $H=\pi\left(G_{i}\right)$.
Prover: Sends i i.e. identifies if H is a permutated copy of G_{1} or G_{2}.
Prove that if the above protocol is in USPZK i.e. there exists a single universal simulator for all verifiers (not just honest ones), then there is a randomized polynomial time algorithm for Graph Isomorphism.

