
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 1
Professor Luca Trevisan 2/1/2007

Solutions to Problem Set 1

1. Prove that the following languages are regular, either by exhibiting a regular expression
representing the language, or a DFA/NFA that recognizes the language:
[10 x 3 = 30 points]

(a) all strings that do not contain the substring aba, for Σ = {a, b} (for instance, aabaa
contains the substring aba, whereas abba does not)
Solution: The following machine recognizes the given language by maintaining a state
for “how much” of the string aba it has seen. On seeing aba it goes into a non-accepting
state and stays there.

b a

a b a

b

a,b

(7 points for the DFA and 3 for the explanation.)

(b) set of strings such that each block of 4 consecutive symbols contains at least two a’s, for
Σ = {a, b}
Solution: The following machine remembers the last four characters it has read from
the string. The names of the states indicate the (length four) blocks they represent.

aaaa aaab aaba aabb

abaa abab abba

baaa baab baba bbaa

bbab

abbb,
babb,

a

b

b

a

a b
a

b

a,b

a
b a

b
a

b

b

a

b

a

a

b
a b

(7 points for the DFA and 3 for the explanation.)

(c) set of binary strings (Σ = {0, 1}) which when interpreted as a number (with the most
significant bit on the left), are divisible by 5.
Solution: We maintain the remainder of the number read so far, when divided by 5.
To update the remainder, note that if x is the number read so far, and b is the new
bit that is read then the new number is y = 2x + b and y mod 5 = ((2x mod 5) + b)
mod 5. (6 points for the DFA and 4 for the explanation.)

0 1 2 3 4

0 1

1

0

0

0

1 0
1

1

1



2. (Sipser, problem 1.31) For any string w = w1w2 · · ·wn, the reverse of w, written as wR is the
string w in reverse order, wn · · ·w2w1. For any language A, let AR = {wR | w ∈ A}. Show
that if A is regular, so is AR.
[20 points]

Solution: One solution is recursively (or inductively) define a reversing operation on regular
expressions, and apply that operation on the regular expression for A. In particular, given a
regular expression R, reverse(R) is:

• a for some a ∈ Σ,
• ε if R = ε,
• ∅ if R = ∅,
• (reverse(R1) ∪ reverse(R2)), if R = R1 ∪ R2,
• (reverse(R2) ◦ reverse(R1)) if R = R1 ◦ R2, or
• (reverse(R1)∗), if R = (R∗

1).

(8 points for saying reversing the regular expression, and 12 points for explaining how it’s
done. It’s important to point out that the operation is performed recursively.)

Another solution is to start with a DFA M for A, and build a NFA M ′ for AR as follows:
reverse all the arrows of M , and designate the start state for M as the only accept state q′acc

for M ’. Add a new start state q′0 for M ′, and from q′0, add ε-transitions to each state of M ′

corresponding to accept states of M .

It is easy to verify that for any w ∈ Σ∗, there is a path following w from the state start to
an accept state in M iff there is a path following wR from q′0 to q′acc in M ′. It follows that
w ∈ A iff wR ∈ AR.

(7 points for saying reversing the arrows; 3 points for explaining the new accept state, and 5
points for explaining the new start state and the ε-transitions. 5 points for explaining, or at
least making the final observation about the paths/connectivity.)

3. We say a string w = w1w2 . . . wn is a shuffle of strings u and v if there exists J ⊆ {1, . . . , n}
such that (wj)j∈J = u and (wj)j /∈J = v. For example CSS17PR2ING07 is a shuffle of
the strings CS172 and SPRING07 and in fact, there are two sets J = {1, 2, 4, 5, 8} and
J = {1, 3, 4, 5, 8} which work here.

We then define the shuffle of two languages A and B as

S(A,B) = {w|∃ u ∈ A, v ∈ B s.t. w is a shuffle of u and v}
Show that if A and B are regular languages over a common alphabet Σ, then so is S(A,B).
[20 points]

Solution: Let MA = (QA,Σ, δA, q0A, FA) and MB = (QB,Σ, δB, q0B, FB) be two DFAs
accepting the languages A and B respectively. Then we define an NFA M = (Q,Σ, δ, q0, F )
for S(A,B) as follows.

Let Q = QA×QB, q0 = (q0A, q0B) and F = FA×FB. Define δ((qA, qB), s) = {(δA(qA, s), qB)}∪
{(qA, δB(qB, s))}, i.e., at each step, the machine changes qA according to δA or qB according
to δB. It reaches a state in FA ×FB if and only if the moves according to δA take it from q0A

to a state in FA, and the ones according to δB take it from q0B to a state in FB. Hence M
accepts exactly the language S(A,B).
(12 points for designing the machine and 8 for the argument.)

2


