
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 10
Professor Luca Trevisan 5/4/2007

Solutions to Problem Set 10

1. (a) Show that TQBF is complete for PSPACE also under logspace reductions.
(Hint: The solution is not lengthy or tedious. Do not try to give the full logspace
reduction. Instead, take a second look at the reduction done in class.)

(b) Show that TQBF /∈ NL.

[20 + 10 = 30 points]

Solution: We look at the proof of PSPACE hardness of TQBF and show that the reduction
can be carried out in logspace. The reduction consists of the following steps

(a) Start with t = 2nk
if the given machine uses space nk.

(b) Start with the formula expressing reachability of the final state from the starting state:
φcstart,caccept,t.

(c) Recursively simplify

φc1,c2,t = ∃m1∀(c3, c4) ∈ {(c1,m1), (m1, c2)}[φc3,c4,t/2]

(d) Finally, express φc1,c2,1 by the constraints that if c1 and c2 are two configurations then
the transition function of the machine correctly leads from c1 to c2.

We now see that each step can be performed in logspace:

(a) In the first step, we simply need to write 1 followed by nk zeros. But note that t is only
needed to carry out the reduction so that we can check how much more do we need to
simplify the formula. We can thus maintain log t on the scratch tape (which takes k log n
bits) since we are reducing t by 1/2 at every step.

(b) We do not need to explicitly write the formula for t and erase and replace by the one for
t/2. We can just simplify “on the go” by simply writing ∃m1∀(c3, c4) ∈ {(c1,m1), (m1, c2)}
and then decrementing the counter for log t, since we know this must be followed by the
formula for t/2.

(c) φc1,c2,1 can be written in logspace, since the action of the transition function (which
is constant sized) on the symbol at a particular location on the tape. The location is
between 1 and nk and can be specified in logspace.

For the second part, note that TQBF ∈ NL would imply that PSPACE ⊆ NL, since
we showed that all problems in PSPACE reduce to TQBF through logspace reductions.
However, by the hierarchy theorems, we know that

NL = SPACE(log2 n) (PSPACE

2. Consider the function pad : Σ∗ ×N → Σ∗#∗ defined as pad(s, l) = s#j , where j = min(0, l−
|s|). Thus, pad(s, l) just adds enough copies of the new symbol # to the end of the string s
so that the length of the new string is at least l. For a language A and a function f : N → N,
define the language pad(A, f(n)) to be

pad(A, f(n)) = {pad(s, f(|s|)) | s ∈ A}

1

(a) Prove that if A ∈ TIME(n6), then pad(A,n2) ∈ TIME(n3).
(Note: This part will not be graded as we proved this in section. You need not submit
the solution to this, but you can attempt this part to understand the definition.)

(b) (Sipser 9.14) Define EXPTIME = TIME(2nO(1)
) and NEXPTIME = NTIME(2nO(1)

).
Use the function pad to prove that

NEXPTIME 6= EXPTIME ⇒ P 6= NP

[15 points]

Solution:

(a) Let M be the machine that decides A in time n6. Now, consider the machine M ′ for
pad(A,n2) that on input x, check if x is of the format pad(w, |w|2) for some string
w ∈ Σ∗. If not, reject. Otherwise, simulate M on w. The running time of M ′ is
O(|x|3) + O(|w|6) = O(|x|3).

(b) We shall prove the contrapositive. Suppose that P = NP. Then, consider any language
L ∈ NEXPTIME, and let c be a positive integer such that L ∈ NTIME(2nc

). Then,
it is easy to see that pad(L, 2nc

) ∈ NP. By assumption, P = NP, so pad(L, 2nc
) ∈

P and therefore L ∈ TIME(2O(nc)) ⊆ EXPTIME. It follows that EXPTIME =
NEXPTIME.

3. Recall that we defined IP as the class of languages A, such that for a polynomial time verifier
V and provers P

w ∈ A ⇒ ∃P Pr[V ↔ P accepts w] = 1
w /∈ A ⇒ ∀P Pr[V ↔ P accepts w] ≤ 1/2

(a) Let IP′ be the class of languages where we allow the prover to be probabilistic i.e. the
prover can use randomness. Show that IP′ = IP.

(b) Let IP′ be the class of languages where we replace the 1/2 in the definition above by 0
i.e. the verifier must surely reject in case w /∈ A. Show that IP′ = NP.

[7 + 8 = 15 points]

Solution:

(a) Since we allow the prover to be computationally unbounded, a probabilistic prover can
be easily simulated by a deterministic prover which considers all possible values of the
provers randomness and the verifier’s responses on each, and then chooses the best.
Hence, a probabilistic prover is no more (and also no less!) powerful than a deterministic
prover which implies that IP′ = IP.

(b) Let r be the randomness used by the verifier. If the verifier accepts a correct proof
with probability 1 and a wrong proof with probability 0, it must accept a correct proof
for every r and reject a wrong proof for every fixed r. But then, the verifier is no
more powerful than a deterministic verifier. However, we saw in class that the class of
languages which can be checked by a deterministic polynomial time verifier equals NP.

2

