Solutions to Problem Set 10

- (a) Show that TQBF is complete for **PSPACE** also under logspace reductions. (*Hint:* The solution is not lengthy or tedious. Do not try to give the full logspace reduction. Instead, take a second look at the reduction done in class.)
 - (b) Show that $TQBF \notin \mathbf{NL}$.

[20 + 10 = 30 points]

SOLUTION: We look at the proof of **PSPACE** hardness of TQBF and show that the reduction can be carried out in logspace. The reduction consists of the following steps

- (a) Start with $t = 2^{n^k}$ if the given machine uses space n^k .
- (b) Start with the formula expressing reachability of the final state from the starting state: $\phi_{c_{start}, c_{accept}, t}$.
- (c) Recursively simplify

$$\phi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\} [\phi_{c_3,c_4,t/2}]$$

(d) Finally, express $\phi_{c_1,c_2,1}$ by the constraints that if c_1 and c_2 are two configurations then the transition function of the machine correctly leads from c_1 to c_2 .

We now see that each step can be performed in logspace:

- (a) In the first step, we simply need to write 1 followed by n^k zeros. But note that t is only needed to carry out the reduction so that we can check how much more do we need to simplify the formula. We can thus maintain log t on the scratch tape (which takes $k \log n$ bits) since we are reducing t by 1/2 at every step.
- (b) We do not need to explicitly write the formula for t and erase and replace by the one for t/2. We can just simplify "on the go" by simply writing $\exists m_1 \forall (c_3, c_4) \in \{(c_1, m_1), (m_1, c_2)\}$ and then decrementing the counter for $\log t$, since we know this must be followed by the formula for t/2.
- (c) $\phi_{c_1,c_2,1}$ can be written in logspace, since the action of the transition function (which is constant sized) on the symbol at a particular location on the tape. The location is between 1 and n^k and can be specified in logspace.

For the second part, note that $TQBF \in \mathbf{NL}$ would imply that $\mathbf{PSPACE} \subseteq \mathbf{NL}$, since we showed that all problems in \mathbf{PSPACE} reduce to TQBF through logspace reductions. However, by the hierarchy theorems, we know that

$$\mathbf{NL} = SPACE(\log^2 n) \subsetneq \mathbf{PSPACE}$$

2. Consider the function $pad: \Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ defined as $pad(s,l) = s\#^j$, where $j = \min(0, l - |s|)$. Thus, pad(s,l) just adds enough copies of the new symbol # to the end of the string s so that the length of the new string is at least l. For a language A and a function $f: \mathbb{N} \to \mathbb{N}$, define the language pad(A, f(n)) to be

$$pad(A, f(n)) = \{ pad(s, f(|s|)) \mid s \in A \}$$

- (a) Prove that if $A \in \mathbf{TIME}(n^6)$, then $pad(A, n^2) \in \mathbf{TIME}(n^3)$. (*Note:* This part will not be graded as we proved this in section. You need not submit the solution to this, but you can attempt this part to understand the definition.)
- (b) (Sipser 9.14) Define **EXPTIME** = **TIME** $(2^{n^{O(1)}})$ and **NEXPTIME** = **NTIME** $(2^{n^{O(1)}})$. Use the function *pad* to prove that

$\mathbf{NEXPTIME} \neq \mathbf{EXPTIME} \Rightarrow \mathbf{P} \neq \mathbf{NP}$

[15 points]

SOLUTION:

- (a) Let M be the machine that decides A in time n⁶. Now, consider the machine M' for pad(A, n²) that on input x, check if x is of the format pad(w, |w|²) for some string w ∈ Σ*. If not, reject. Otherwise, simulate M on w. The running time of M' is O(|x|³) + O(|w|⁶) = O(|x|³).
- (b) We shall prove the contrapositive. Suppose that $\mathbf{P} = \mathbf{NP}$. Then, consider any language $L \in \mathbf{NEXPTIME}$, and let c be a positive integer such that $L \in \mathbf{NTIME}(2^{n^c})$. Then, it is easy to see that $pad(L, 2^{n^c}) \in \mathbf{NP}$. By assumption, $\mathbf{P} = \mathbf{NP}$, so $pad(L, 2^{n^c}) \in \mathbf{P}$ and therefore $L \in \mathbf{TIME}(2^{O(n^c)}) \subseteq \mathbf{EXPTIME}$. It follows that $\mathbf{EXPTIME} = \mathbf{NEXPTIME}$.
- 3. Recall that we defined **IP** as the class of languages A, such that for a polynomial time verifier V and provers P

$$w \in A \Rightarrow \exists P \mathbf{Pr}[V \leftrightarrow P \text{ accepts } w] = 1$$
$$w \notin A \Rightarrow \forall P \mathbf{Pr}[V \leftrightarrow P \text{ accepts } w] \le 1/2$$

- (a) Let \mathbf{IP}' be the class of languages where we allow the prover to be probabilistic i.e. the prover can use randomness. Show that $\mathbf{IP}' = \mathbf{IP}$.
- (b) Let \mathbf{IP}' be the class of languages where we replace the 1/2 in the definition above by 0 i.e. the verifier must surely reject in case $w \notin A$. Show that $\mathbf{IP}' = \mathbf{NP}$.

[7 + 8 = 15 points]

SOLUTION:

- (a) Since we allow the prover to be computationally unbounded, a probabilistic prover can be easily simulated by a deterministic prover which considers all possible values of the provers randomness and the verifier's responses on each, and then chooses the best. Hence, a probabilistic prover is no more (and also no less!) powerful than a deterministic prover which implies that $\mathbf{IP}' = \mathbf{IP}$.
- (b) Let r be the randomness used by the verifier. If the verifier accepts a correct proof with probability 1 and a wrong proof with probability 0, it must accept a correct proof for every r and reject a wrong proof for every fixed r. But then, the verifier is no more powerful than a deterministic verifier. However, we saw in class that the class of languages which can be checked by a deterministic polynomial time verifier equals **NP**.