Solutions to Problem Set 2

1. Let k be a positive integer. Let $\Sigma=\{0,1\}$, and L be the language consisting of all strings over $\{0,1\}$ containing a 1 in the k th position from the end (in particular, all strings of length less than k are not in $L)$. $8 \mathbf{8}+\mathbf{8}+\mathbf{1 4}=\mathbf{3 0}$ points]
(a) Construct a DFA with exactly 2^{k} states that recognizes L.

Solution: Construct a DFA with one state corresponding to every k-bit string. Formally, let $Q=\{0,1\}^{k}$. We keep track of the last k bits read by the machine. Thus, for a state $x_{1} \ldots x_{k}$, we define the transition on reading the bit b as $\delta\left(x_{1} \ldots x_{k}, b\right)=x_{2} \ldots x_{k} b$. Take $q_{0}=0^{k}$ and $F=\left\{x_{1} \ldots x_{k} \in Q \mid x_{1}=1\right\}$. Note that this does not accept any strings of length less than k (as we start with the all zero state) since the k th position from the end does not exist, and is hence not 1 .
(b) Construct a NFA with exactly $k+1$ states that recognizes L.

Solution: We construct an NFA with $Q=\{0,1, \ldots, k\}$, with the names of the states corresponding to how many of the last k bits the NFA has seen. Define $\delta(0,0)=0$, $\delta(0,1)=\{0,1\}$ and $\delta(i-1,0 / 1)=i$ for $2 \leq i \leq k$. We set $q_{0}=0$ and $F=\{k\}$. The machine starts in state 0 , on seeing a 1 it may guess that it is the k th bit from the end and proceed to state 1 . It then reaches state k and accepts if and only if there are exactly $k-1$ bits following the one on which it moved from 0 to 1 .
(c) Prove that any DFA that recognizes L has at least 2^{k} states.

Solution: Consider any two different k-bit strings $x=x_{1} \ldots x_{k}$ and $y=y_{1} \ldots y_{k}$ and let i be some position such that $x_{i} \neq y_{i}$ (there must be at least one). Hence, one of the strings contains a 1 in the i th position, while the other contains a 0 . Let $z=0^{i-1}$. Then z distinguishes x and y as exactly one of $x z$ and $y z$ has the k th bit from the end as 1 . Since there are 2^{k} binary strings of length k, which are all mutually distinguishable by the above argument, any DFA for the language must have at least 2^{k} states.
2. $[\mathbf{1 0}+\mathbf{1 0}+\mathbf{1 0}=\mathbf{3 0}$ points]
(a) Let A be the set of strings over $\{0,1\}$ that can be written in the form $1^{k} y$ where y contains at least $k 1 \mathrm{~s}$, for some $k \geq 1$. Show that A is a regular language.
Solution: It is easy to see that any string in A must start with a 1 , and contain at least one other 1 (in the matching y segment). Conversely, any string that starts with a 1 and contains at least one other 1 matches the description for $k=1$. Hence, A is described by the regular expression $1 \circ 0^{*} \circ 1 \circ(0 \cup 1)^{*}$, and is therefore regular.
(b) Let B be the set of strings over $\{0,1\}$ that can be written in the form $1^{k} 0 y$ where y contains at least $k 1 \mathrm{~s}$, for some $k \geq 1$. Show that B is not a regular language.
Solution: Assume to the contrary that B is regular. Let p be the pumping length given by the pumping lemma. Consider the string $s=1^{p} 0^{p} 1^{p} \in B$. The pumping lemma guarantees that s can be split into 3 pieces $s=a b c$, where $|a b| \leq p$. Hence, $y=1^{i}$ for some $i \geq 1$. Then, by the pumping lemma, $a b^{2} c=1^{p+i} 0^{p} 1^{p} \in B$, but cannot be written in the form specified, a contradiction.
(c) Let C be the set of strings over $\{0,1\}$ that can be written in the form $1^{k} z$ where z contains at most $k 1 \mathrm{~s}$, for some $k \geq 1$. Show that C is not a regular language.
Solution: Assume to the contrary that C is regular. Let p be the pumping length given by the pumping lemma. Consider the string $s=1^{p} 0^{p} 1^{p} \in B$. The pumping lemma guarantees that s can be split into 3 pieces $s=a b z$, where $|a b| \leq p$. Hence, $b=1^{i}$ for some $i \geq 1$. Then, by the pumping lemma, $a c=1^{p-i} 0^{p} 1^{p} \in C$, but cannot be written in the form specified, a contradiction.
3. Write regular expressions for the following languages: $[\mathbf{1 2}+\mathbf{8}=\mathbf{2 0}$ points $]$
(a) The set of all binary strings such that every pair of adjacent 0's appears before any pair of adjacent 1's.
Solution: Using $R(L)$, to denote the regular expression for the given language L, we must have $R(L)=R\left(L_{1}\right) R\left(L_{2}\right)$, where L_{1} is the language of all strings that do not contain any pair of 1 's and L_{2} is the language of all strings that do not contain any pair of 0 's. For a string in L_{1}, every occurrence of a 1 , except possibly the last one, must be followed by a 0 . Hence, $R\left(L_{1}\right)=(0+10)^{*}(1+\epsilon)$. Similarly, $R\left(L_{2}\right)=(1+01)^{*}(0+\epsilon)$. Thus, $R(L)=(0+10)^{*}(1+\epsilon)(1+01)^{*}(0+\epsilon)$, which simplifies to $(0+10)^{*}(1+01)^{*}(0+\epsilon)$.
(b) The set of all binary strings such that the number of 0 's in the string is divisible by 5 .

Solution: Any string in the language must be composed of 0 or more blocks, each having exactly five 0's and an arbitrary number of 1 's between them. This is given by the regular expression $\left(1^{*} 01^{*} 01^{*} 01^{*} 01^{*} 1^{*} 01^{*}\right)$. However, this does not capture the strings containing all 1's, which can be included separately, giving the expression $\left(1^{*} 01^{*} 01^{*} 01^{*} 01^{*} 01^{*}\right)+$ 1* for the language.
4. We say a string x is a proper prefix of a string y, if there exists a non-empty string z such that $x z=y$. For a language A, we define the following operation

$$
N O E X T E N D(A)=\{w \in A \mid w \text { is not a proper prefix of any string in } A\}
$$

Show that if A is regular, then so is $N O E X T E N D(A)$.[20 points]
Solution: Given a DFA for the language A, we want to accept only those strings which reach a final state, but to which no string can be added to reach a final state again. Hence, we want to accept strings ending in exactly those final states, from which there is no (directed) path to any final state (not even itself).
For a given state $q \in F$, we can check if there is a path from q to any state in F (or a cycle involving q) by a DFS. Let $F^{\prime} \subseteq F$ be the set of all the states from which there is no such path. Then changing the set of final states of the DFA to F^{\prime} gives a DFA for $N O E X T E N D(A)$.

