
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 2
Professor Luca Trevisan 2/8/2007

Solutions to Problem Set 2

1. Let k be a positive integer. Let Σ = {0, 1}, and L be the language consisting of all strings
over {0, 1} containing a 1 in the kth position from the end (in particular, all strings of length
less than k are not in L). [8 + 8 + 14 = 30 points]

(a) Construct a DFA with exactly 2k states that recognizes L.
Solution: Construct a DFA with one state corresponding to every k-bit string. For-
mally, let Q = {0, 1}k. We keep track of the last k bits read by the machine. Thus, for a
state x1 . . . xk, we define the transition on reading the bit b as δ(x1 . . . xk, b) = x2 . . . xkb.
Take q0 = 0k and F = {x1 . . . xk ∈ Q | x1 = 1}. Note that this does not accept any
strings of length less than k (as we start with the all zero state) since the kth position
from the end does not exist, and is hence not 1.

(b) Construct a NFA with exactly k + 1 states that recognizes L.
Solution: We construct an NFA with Q = {0, 1, . . . , k}, with the names of the states
corresponding to how many of the last k bits the NFA has seen. Define δ(0, 0) = 0,
δ(0, 1) = {0, 1} and δ(i − 1, 0/1) = i for 2 ≤ i ≤ k. We set q0 = 0 and F = {k}. The
machine starts in state 0, on seeing a 1 it may guess that it is the kth bit from the
end and proceed to state 1. It then reaches state k and accepts if and only if there are
exactly k − 1 bits following the one on which it moved from 0 to 1.

(c) Prove that any DFA that recognizes L has at least 2k states.
Solution: Consider any two different k-bit strings x = x1 . . . xk and y = y1 . . . yk and
let i be some position such that xi 6= yi (there must be at least one). Hence, one of the
strings contains a 1 in the ith position, while the other contains a 0. Let z = 0i−1. Then
z distinguishes x and y as exactly one of xz and yz has the kth bit from the end as 1.
Since there are 2k binary strings of length k, which are all mutually distinguishable by
the above argument, any DFA for the language must have at least 2k states.

2. [10 + 10 + 10 = 30 points]

(a) Let A be the set of strings over {0, 1} that can be written in the form 1ky where y
contains at least k 1s, for some k ≥ 1. Show that A is a regular language.
Solution: It is easy to see that any string in A must start with a 1, and contain at
least one other 1 (in the matching y segment). Conversely, any string that starts with
a 1 and contains at least one other 1 matches the description for k = 1. Hence, A is
described by the regular expression 1 ◦ 0∗ ◦ 1 ◦ (0 ∪ 1)∗, and is therefore regular.

(b) Let B be the set of strings over {0, 1} that can be written in the form 1k0y where y
contains at least k 1s, for some k ≥ 1. Show that B is not a regular language.
Solution: Assume to the contrary that B is regular. Let p be the pumping length
given by the pumping lemma. Consider the string s = 1p0p1p ∈ B. The pumping lemma
guarantees that s can be split into 3 pieces s = abc, where |ab| ≤ p. Hence, y = 1i for
some i ≥ 1. Then, by the pumping lemma, ab2c = 1p+i0p1p ∈ B, but cannot be written
in the form specified, a contradiction.

1

(c) Let C be the set of strings over {0, 1} that can be written in the form 1kz where z
contains at most k 1s, for some k ≥ 1. Show that C is not a regular language.
Solution: Assume to the contrary that C is regular. Let p be the pumping length
given by the pumping lemma. Consider the string s = 1p0p1p ∈ B. The pumping lemma
guarantees that s can be split into 3 pieces s = abz, where |ab| ≤ p. Hence, b = 1i for
some i ≥ 1. Then, by the pumping lemma, ac = 1p−i0p1p ∈ C, but cannot be written in
the form specified, a contradiction.

3. Write regular expressions for the following languages: [12 + 8 = 20 points]

(a) The set of all binary strings such that every pair of adjacent 0’s appears before any pair
of adjacent 1’s.
Solution: Using R(L), to denote the regular expression for the given language L, we
must have R(L) = R(L1)R(L2), where L1 is the language of all strings that do not
contain any pair of 1’s and L2 is the language of all strings that do not contain any pair
of 0’s. For a string in L1, every occurrence of a 1, except possibly the last one, must be
followed by a 0. Hence, R(L1) = (0 + 10)∗(1 + ε). Similarly, R(L2) = (1 + 01)∗(0 + ε).
Thus, R(L) = (0+10)∗(1+ε)(1+01)∗(0+ε), which simplifies to (0+10)∗(1+01)∗(0+ε).

(b) The set of all binary strings such that the number of 0’s in the string is divisible by 5.
Solution: Any string in the language must be composed of 0 or more blocks, each hav-
ing exactly five 0’s and an arbitrary number of 1’s between them. This is given by the reg-
ular expression (1∗01∗01∗01∗01∗1∗01∗). However, this does not capture the strings con-
taining all 1’s, which can be included separately, giving the expression (1∗01∗01∗01∗01∗01∗)+
1∗ for the language.

4. We say a string x is a proper prefix of a string y, if there exists a non-empty string z such
that xz = y. For a language A, we define the following operation

NOEXTEND(A) = {w ∈ A | w is not a proper prefix of any string in A}

Show that if A is regular, then so is NOEXTEND(A).[20 points]

Solution: Given a DFA for the language A, we want to accept only those strings which reach
a final state, but to which no string can be added to reach a final state again. Hence, we
want to accept strings ending in exactly those final states, from which there is no (directed)
path to any final state (not even itself).

For a given state q ∈ F , we can check if there is a path from q to any state in F (or a cycle
involving q) by a DFS. Let F ′ ⊆ F be the set of all the states from which there is no such path.
Then changing the set of final states of the DFA to F ′ gives a DFA for NOEXTEND(A).

2

