U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 2
Professor Luca Trevisan 2/8/2007

Solutions to Problem Set 2

1. Let k be a positive integer. Let ¥ = {0,1}, and L be the language consisting of all strings
over {0, 1} containing a 1 in the kth position from the end (in particular, all strings of length
less than k are not in L). [8 + 8 + 14 = 30 points]

(a)

Construct a DFA with exactly 2 states that recognizes L.

SoLUTION: Construct a DFA with one state corresponding to every k-bit string. For-
mally, let @ = {0,1}*. We keep track of the last k bits read by the machine. Thus, for a
state x1 ...z, we define the transition on reading the bit b as 6(z1 ...z, b) = zo ... xd.
Take o = 0F and F = {x...2; € Q | z; = 1}. Note that this does not accept any
strings of length less than k (as we start with the all zero state) since the kth position
from the end does not exist, and is hence not 1.

Construct a NFA with exactly k + 1 states that recognizes L.

SOLUTION: We construct an NFA with @ = {0,1,...,k}, with the names of the states
corresponding to how many of the last k& bits the NFA has seen. Define §(0,0) = 0,
5(0,1) = {0,1} and §(¢ — 1,0/1) = i for 2 < i < k. We set ¢qo = 0 and F = {k}. The
machine starts in state 0, on seeing a 1 it may guess that it is the kth bit from the
end and proceed to state 1. It then reaches state k and accepts if and only if there are
exactly k — 1 bits following the one on which it moved from 0 to 1.

Prove that any DFA that recognizes L has at least 2¥ states.

SOLUTION: Consider any two different k-bit strings x = x1...2; and y = y1 ... y; and
let i be some position such that z; # y; (there must be at least one). Hence, one of the
strings contains a 1 in the ith position, while the other contains a 0. Let z = 0°~!. Then
z distinguishes x and y as exactly one of xz and yz has the kth bit from the end as 1.
Since there are 2¥ binary strings of length k, which are all mutually distinguishable by
the above argument, any DFA for the language must have at least 2F states.

2. [10 + 10 4+ 10 = 30 points]

(a)

Let A be the set of strings over {0,1} that can be written in the form 1¥y where y
contains at least k 1s, for some k > 1. Show that A is a regular language.

SOLUTION: It is easy to see that any string in A must start with a 1, and contain at
least one other 1 (in the matching y segment). Conversely, any string that starts with
a 1 and contains at least one other 1 matches the description for £k = 1. Hence, A is
described by the regular expression 1 00" o010 (0U 1)*, and is therefore regular.

Let B be the set of strings over {0,1} that can be written in the form 1¥0y where y
contains at least k 1s, for some k > 1. Show that B is not a regular language.
SOLUTION: Assume to the contrary that B is regular. Let p be the pumping length
given by the pumping lemma. Consider the string s = 1°0P1? € B. The pumping lemma
guarantees that s can be split into 3 pieces s = abc, where |ab| < p. Hence, y = 1? for
some i > 1. Then, by the pumping lemma, ab’c = 1P0P1? € B, but cannot be written
in the form specified, a contradiction.

(c) Let C be the set of strings over {0,1} that can be written in the form 1%z where z
contains at most k 1s, for some k > 1. Show that C' is not a regular language.
SOLUTION: Assume to the contrary that C is regular. Let p be the pumping length
given by the pumping lemma. Consider the string s = 1P0P1P € B. The pumping lemma
guarantees that s can be split into 3 pieces s = abz, where |ab] < p. Hence, b = 1¢ for
some i > 1. Then, by the pumping lemma, ac = 1P~*0P1? € C, but cannot be written in
the form specified, a contradiction.

3. Write regular expressions for the following languages: [12 + 8 = 20 points]

(a) The set of all binary strings such that every pair of adjacent 0’s appears before any pair
of adjacent 1’s.
SoLuTION: Using R(L), to denote the regular expression for the given language L, we
must have R(L) = R(L1)R(L2), where L; is the language of all strings that do not
contain any pair of 1’s and Lo is the language of all strings that do not contain any pair
of 0’s. For a string in L1, every occurrence of a 1, except possibly the last one, must be
followed by a 0. Hence, R(Li) = (0 + 10)*(1 + €). Similarly, R(L2) = (1 + 01)*(0 + ¢).
Thus, R(L) = (0+10)*(1+4¢€)(1401)*(0+¢€), which simplifies to (0+10)*(1+01)*(0+e).

(b) The set of all binary strings such that the number of 0’s in the string is divisible by 5.
SOLUTION: Any string in the language must be composed of 0 or more blocks, each hav-
ing exactly five 0’s and an arbitrary number of 1’s between them. This is given by the reg-
ular expression (1*01*01*01*01*1*01*). However, this does not capture the strings con-
taining all 1’s, which can be included separately, giving the expression (1*01*01*01*01*01*)+
1* for the language.

4. We say a string x is a proper prefix of a string y, if there exists a non-empty string z such
that xz = y. For a language A, we define the following operation

NOEXTEND(A) ={w € A | w is not a proper prefix of any string in A}

Show that if A is regular, then so is NOEXTEND(A).[20 points]

SOLUTION: Given a DFA for the language A, we want to accept only those strings which reach
a final state, but to which no string can be added to reach a final state again. Hence, we
want to accept strings ending in exactly those final states, from which there is no (directed)
path to any final state (not even itself).

For a given state ¢ € F', we can check if there is a path from ¢ to any state in F' (or a cycle
involving ¢) by a DFS. Let F’ C F be the set of all the states from which there is no such path.
Then changing the set of final states of the DFA to F’ gives a DFA for NOEXTEND(A).

