Solutions to Problem Set 3

1. Define C to be all strings consisting of some positive number of 0 's, followed by some string twice, followed again by some positive number of 0 . For example 1100 is not in C, since it does not start with at least one 0 . However 0001011010000000 is in C since it is three 0 's, followed by 101 twice, followed by seven 0's. Prove that C is not regular.
[10 points]
Solution: We will show that there are infinitely many strings, any two of which are distinguishable with respect to C. This will mean there are infinitely many indistinguishability classes. By the Myhill-Nerode Theorem, we can then conclude that C is not regular.
Our strings will be $01^{k} 0$ for each natural number k. Let k_{1} and k_{2} be distinct natural numbers. $01^{k_{1}} 01^{k_{1}} 00$ is in L. If $01^{k_{1}} 01^{k_{2}} 00$ were in L, then it must be $0 s s 0$ or $0 s s 00$ for some string s. So s must contain at least one zero. Thus $01^{k_{1}} 01^{k_{2}} 00$ must be $0 s s 0$. So s must end with a 0 , and that is the only 0 in s But then must s must be both $1^{k_{1}} 0$ and $1^{k_{2}} 0$. This is impossible since those strings have different lengths. So each $01^{k} 0$ is in a different indistinguishability class and C is not regular.
(4 points for giving the correct strings, 6 points for arguing distinguishability)
2. Let A be the set of all binary strings which, when interpreted as a number with the most significant bit on the left, are divisible by 5 . We know the language is regular from a previous homework. Construct an optimal DFA for A and prove its optimality by giving pairwise distinguishable strings, equal in number to the number of states in your DFA.

[10 points]

Solution: The following DFA with 5 states recognizes the language (as proved in HW 1). We claim that any two binary strings, which when interpreted as numbers have different remainders modulo 5 , are distinguishable. This would imply that there must be at least 5 equivalence classes for the indistinguishability relation and hence the DFA here is optimal.

To prove the claim, consider any two strings (thinking of them as numbers) x and y. Let $x=r_{1} \bmod 5$ and $y=r_{2} \bmod 5$, with $r_{1} \neq r_{2}$. Let w be the number $5-r_{1}$, written using four bits. Then

$$
x w \equiv\left(2^{4} x+5-r_{1}\right) \equiv\left[\left(2^{4} \quad \bmod 5\right)(x \bmod 5)+5-r_{1}\right] \equiv 0 \quad \bmod 5
$$

On the other hand,

$$
y w \equiv\left[\left(2^{4} \quad \bmod 5\right)(y \bmod 5)+5-r_{1}\right] \equiv r_{2}-r_{1} \not \equiv 0 \quad \bmod 5
$$

Hence, the two strings can be distinguished.
(3 points for giving the DFA, 2 points for giving the equivalence classes and 5 points for showing the distinguishability.)
3. Consider the language $F=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and if $i=1$ then $\left.j=k\right\}$. $[4+4+2=10$ points $]$
(a) Show that F acts like a regular language in the pumping lemma i.e. give a pumping length p and show that F satisfies the conditions of the lemma for this p.
Solution: The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write $s=x y z$ with $|x y| \leq p$, such that $x y^{i} z$ is also in the language for every $i \geq 0$.
For the given language, we can take $p=2$. Consider any string $a^{i} b^{j} c^{k}$ in the language. If $i=1$ or $i>2$, we take $x=\epsilon$ and $y=a$. If $i=1$, we must have $j=k$ and adding any number of a 's still preserves the membership in the language. For $i>2$, all strings obtained by pumping y as defined above, have two or more a 's and hence are always in the language.
For $i=2$, we can take $x=\epsilon$ and $y=a a$. Since the strings obtained by pumping in this case always have an even number of a 's, they are all in the language. Finally, for the case $i=0$, we take $x=\epsilon$, and $y=b$ if $j>0$ and $y=c$ otherwise. Since strings of the form $b^{j} c^{k}$ are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
(1 point for handling each of the cases.)
(b) Show that F is not regular.

Solution: We claim all strings of the form $a b^{i}$ must be in distinct equivalence classes for all $i \geq 0$. This is because any two strings $a b^{i_{1}}$ and $a b^{i_{2}}$ can be distinguished by $c^{i_{1}}$, since $a b^{i_{1}} c^{i_{1}} \in F$, while $a b^{i_{2}} c^{i_{1}} \notin F$. Since there are infinitely many equivalence classes of the indistinguishability relation, we conclude by the Myhill-Nerode theorem that no DFA can recognize F.
(2 points for giving a set of distinguishable strings and 2 points for arguing the distinguishability.)
(c) Why is this not a contradiction?

Solution: The pumping lemma only says that if a language is regular, then it must satisfy the conditions of the lemma. However, this does not necessarily mean that no non-regular language can satisfy these conditions. (2 points)
4. Show that for any positive integer m, there exists a language A_{m} such that:
(a) There is a DFA with m states which recognizes A_{m}.
(b) No DFA with less than m states recognizes A_{m}.

[10 points]

Solution 1: Consider the language $A_{m}=\left\{1^{m-2}\right\}$ over the alphabet $\Sigma=\{0,1\}$. A DFA with m states which has states $0, \ldots, m-2$ for counting the number of 1 s seen so far, and an additional "crash state" into which it enters on ever seeing a 0 or more than $m-21$ s, is a DFA with m states which recognizes this language. On the other hand, any two strings of the form $1^{i}, 1^{j}$ for $0 \leq i<j \leq m-1$ are distinguished by 1^{m-2-i} and hence, any DFA must have at least m states.
Solution 2: Let $A_{m}=\left\{1^{k} \mid m\right.$ divides k) over $\Sigma=\{1\}$. A DFA with m states which simply stores the number of 1 s seen so far, modulo m recognizes this language. Also, for any two
strings $1^{k_{1}}$ and $1^{k_{2}}$ such that $k_{1} \not \equiv k_{2} \bmod m$, the string $1^{m-\left(k_{1} \bmod m\right)}$ distinguishes the two. Hence, any two strings in which the number of 1 s is different modulo m must be in different equivalence classes, showing that no DFA with less than m states can recognize this language. (5 points for exhibiting the first condition and 5 points for the second.)

