
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 4
Professor Luca Trevisan 2/23/2007

Solutions to Problem Set 4

1. (Sipser, Problem 3.13) A Turing machine with stay put instead of left is similar to an ordinary
Turing machine, but the transition function has the form

δ : Q× T → Q× T × {R,S}

At each point the machine can move its head right or let it stay in the same position. Show
that this Turing machine variant is not equivalent to the usual version. (Hint: Show that
these machines only recognize regular languages). [20 points]

Solution: It is easy to see that we can simulate any DFA on a Turing machine with stay
put instead of left. The only non-trivial modification is to add transitions from state in F to
qaccept upon reading a blank, and from states outside F to qreject upon reading a blank.

Next, we start with a Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) with stay put instead
of left, and show how we can construct a DFA (Q′,Σ′, δ′, q′

0, F ) that recognizes the same
language. The intuition here is that M cannot move left and cannot read anything it has
written on the tape as soon as it moves right, and therefore it has essentially only one-way
access to its input, much like a DFA.

First, we modify M as follows; note that these changes do not affect the language it recognizes.

• Add a new symbol so that M never writes blanks on the tape; instead, M writes the
new symbol when it’s going to write blanks, and we extend the transition function so
that upon reading this new symbol, it behaves as though it read a blank.

• When M transitions into qreject or qaccept, the reading head moves right (and never
stays put).

Set Q′ = Q, Σ′ = Σ, q′
0 = q0, and consider the transition function:

δ′(q, σ) =


q, if q ∈ {qaccept, qreject}
qreject, if M starting at state q and reading σ keeps staying put.
q′, where q′ is the state the M enters when it first moves right

upon starting at state q and reading σ.

(for q ∈ Q and σ ∈ Σ). Observe that there are finitely many state-alphabet pairs, M either
ends up either staying put and looping, or eventually moves right, and thus δ′ is well-defined.
Finally, we define F to be the set containing qaccept and all states q ∈ Q, q 6= qaccept, qreject
such that M starting at q and reading blanks, eventually enters qaccept.

2. (Sipser, Problem 3.18) Show that a language is decidable iff some enumerator enumerates the
language in lexicographic order. [15 points]

Solution:If A is decidable by some TM M , the enumerator operates by generating the strings
in lexicographic order, testing each in turn for membership in A using M , and printing the
string if it is in A.

1



If A is enumerable by some enumerator E in lexicographic order, we consider two cases. If
A is finite, it is decidable because all finite languages are decidable (just hardwire each of
the strings into the TM). If A is infinite, a TM M that decides A operates as follows. On
receiving input w, M runs E to enumerate all strings in A in lexicographic order until some
string lexicographically after w appears. This must occur eventually because A is infinite. If
w has appeared in the enumeration already, then accept; else reject.

Note: It is necessary to consider the case where A is finite separately because the enumerator
may loop without producing additional output when it is enumerating a finite language. As
a result, we end up showing that the language is decidable without using the enumerator for
the language to construct a decider. This is a subtle, but essential point.

3. Say that string x is a prefix of string y if a string z exists where xz = y, and say that x is a
proper prefix of y if in addition x 6= y. A language is prefix-free if it doesn’t contain a proper
prefix of any of its members. Let

PrefixFreeREX = {R|R is a regular expression where L(R) is prefix-free}

Show that PrefixFreeREX is decidable. [15 points]

Solution:We construct a TM that decides PrefixFreeREX as follows1. On input R, reject if R
is not a valid regular expression. Otherwise, construct a DFA D for the language L(R) (refer
to chapter 1 of Sipser for the algorithm that constructs an equivalent NFA for L(R) from R,
and for the algorithm that converts an NFA to a DFA). By running a DFS starting from q0,
we can remove all states that are not reachable from q0 from the automaton.

Finally, for each accept state q, we run a DFS starting from q and check if another accept
state (not equal to q) is reachable from q, or if there is a loop from q to itself. If any such
paths or loops are found, reject. Otherwise, accept. Note that it is first required to remove
all the states (actually, just accepting states) not reachable from q0 as these states cannot
lead to any string being in the language.

4. Let Non− Empty be the following language

Non− Empty = {< M > | M accepts some string}.

Show that Non− Empty is Turing recognizable. [10 points]

Solution: We simply proceed as in the construction of an enumerator from a Turing machine:
simulate M on all strings of length at most i for i steps, and keep increasing i. We accept
if the computation of M accepts some string. If L(M) is non-empty, we are certain that for
some i our machine will halt and accept.

1Note that PrefixFreeREX can contain infinite languages. For instance, take R = 0∗1.

2


