Solutions to Problem Set 5

1. Let $B=\{(n, m) \mid$ Every n - state machine M either halts in less than m steps on an empty input, or doesn't halt on an empty input $\}$.
(a) Show that B is not decidable.
(b) Show that B is not recognizable.
$[20+10=30$ points $]$ Solution:
(a) We show that if B is decidable, then we can construct a routine for deciding $H A L T_{T M}$ which will be a contradiction. Given an input $\langle M, w\rangle$, we want to decide if M halts on w or not. We first construct a machine N, which just ignores its input and simulates M on w. Hence, N will halt on the empty input if and only if M halts on w.
Let n be the number of states in N. We can now test if N halts on the empty input as follows:
```
k = 1
while (true) {
    if (n,k)\inB
        break
    else
        k=k+1
    }
run N on the empty input for k steps
accept if N halts in at most k steps else reject
```

Since the number of n-state machines is finite (assuming a fixed alphabet), there must be some maximum k such that all such machines either halt in k steps or run forever. The above algorithm first finds this k and then simply checks if N halts in k steps.
(b) We show that \bar{B} is recognizable. Since B is not decidable, this implies that B cannot be recognizable.
$\bar{B}=\{(n, m) \mid$ some n-state machine halts on the empty input after more than m steps $\}$
Since there are only a finite number of machines with n states, we can simulate all of them in parallel on the empty input. If $(n, m) \in \bar{B}$, then at least one of the machines will halt after more than m steps and we will stop and accept.
2. (Sipser 5.9) Let $T=\left\{\langle M\rangle \mid M\right.$ is a TM that accepts w^{R} whenever it accepts $\left.w\right\}$. Show that T is undecidable.
[10 points]
Solution: Let $\mathcal{C}=\left\{\right.$ languages $\left.L \mid w \in L \Leftrightarrow w^{R} \in L\right\}$. Then $L_{\mathcal{C}}=T$. The language 0^{*} is in $T=L_{\mathcal{C}}$ since $\left(0^{k}\right)^{R}=0^{k}$. 0^{*} is regular, so there must be some machine for it. So T is not empty. Also $\{01\}$ is finite, so there is a machine for it. And $\{01\}$ is not in T. So T is not everything. By Rice's theorem, T must be undecidable, since it is not everything or empty.
3. (Sipser problem 6.13.) Consider the theory $\operatorname{Th}\left(\mathbb{Z}_{5},+, \times\right)$ defined like the theory $\operatorname{Th}(\mathbb{N},+, \times)$ except that addition and multiplication are perfomed modulo 5 .
We allow variables $x_{1}, \ldots, x_{n}, \ldots$, and

- for every three variables x_{i}, x_{j}, x_{k}, we have that $x_{i}+x_{j}=x_{k}(\bmod 5)$ is an expression with free variables x_{i}, x_{j}, x_{k} and that $x_{i} \times x_{j}=x_{k}(\bmod 5)$ is also an expression with free variables x_{i}, x_{j}, x_{k};
- If E_{1}, E_{2} are expressions, having free variables X_{1} and X_{2} respectively, then $E_{1} \vee E_{2}$ and $E_{1} \wedge E_{2}$ are expressions, having free variables $X_{1} \cup X_{2}$. We also have that $\neg E_{1}$ is an expression, with free variables X_{1}.
- If E is an expression with free variables X, and $x_{i} \in X$, then $\exists x_{i}$.E and $\forall x_{i}$.E are expressions with free variables $X-\left\{x_{i}\right\}$.
- An expression with no free variables is a statement.

For example, the statement $\forall x \cdot \exists y \cdot(y+y=x(\bmod 5))$ is true (try it), but the statement $\forall x . \exists y .(y \times y=x(\bmod 5))$ is false (consider $x=2)$.
Show that $\operatorname{Th}\left(\mathbb{Z}_{5},+, \times\right)$ is decidable.

[20 points]

Solution: Given a formula ϕ, first we write ϕ as $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$ where the Q_{i} 's are quantifiers and ψ has no quantifiers. Now for k from n down to 0 , we will define something called I_{k} with k many inputs. We will compute the value of I_{k} for each possible input from \mathbb{Z}_{5}^{k}. Put

$$
I_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

And for $k>0$, if $Q_{k}=\exists$, put

$$
I_{k-1}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=\bigvee_{i=0}^{4} I_{k}\left(x_{1}, x_{2}, \ldots, x_{k-1}, i\right)
$$

And for $Q_{k}=\forall$, put

$$
I_{k-1}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=\bigwedge_{i=0}^{4} I_{k}\left(x_{1}, x_{2}, \ldots, x_{k-1}, i\right)
$$

So I_{0} will have no inputs and just be true or false. Output I_{0}.

To prove that this works, just see by induction that

$$
\phi \Leftrightarrow Q_{1} Q_{2} \ldots Q_{k} I_{k}
$$

This is automatic for $k=n$ since $\psi=I_{n}$. And the inductive step works because we are just checking all cases. For $k=0$ this gives us

$$
\phi \Leftrightarrow I_{0}
$$

which is what we output.
So we can decide the theory of $\operatorname{Th}\left(\mathbb{Z}_{5},+, \times\right)$.

