
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 6
Professor Luca Trevisan 4/2/2007

Solutions to Problem Set 6

1. (Sipser problem 6.20.) Show how to compute the Kolmogorov complexity KU (x) of a string
x with an oracle for ATM.

The definition of an oracle is given in Sipser definition 6.20 on page 233. An oracle is essentially
a subroutine. You could interprete this problem as asking for an algorithm that on input x,
computes the descriptive complexity of x, that is, KU (x), using a subroutine for ATM. On
input 〈M,w〉 the subroutine will return 1 if M accepts w, and 0 otherwise. Whenever you
invoke the subroutine on some input 〈M,w〉, use the terminology “query the ATM oracle on
input 〈M,w〉”.

For instance, the machine S in the proof that HALTTM is undecidable in Sipser theorem 5.1
(page 188-189) is an example of a algorithm for HALTTM using an oracle for ATM. In that
example, S only uses the ATM subroutine once. In general (and for this problem), you are
allowed to invoke the subroutine any number of times, and the oracle queries may be adaptive
(that is, the next query may depend on the answers to the previous ones).
[20 points]

Solution:Here’s an algorithm for computing K(x). On input x,

1. Go through all binary strings s in lexicographic order, and for each such s, parse s as
〈M,w〉 for some TM M and input w. If s fails to parse, move to the next such s.

2. Modify the machine M so that all transitions to the reject state go to the accept state.
Call the modified machine M ′. Now, M halts on w if and only if M ′ accepts w.

3. Next, query ATM on input 〈M ′, w〉. If ATM accepts 〈M ′, w〉, simulate M on w (this will
halt), and check whether M on input w halts with x on its tape. Output |s|.

Since we are going through the strings in lexicographic order, we will output the length of
the shortest description (and the lexicographically first one if there is a tie).

2. Prove that if R is the set of Kolmogorov random strings {x ∈ Σ∗|K(x) ≥ |x|} and A is a
decidable subset of R, then A is finite.
[15 points]

Solution: Supposing A is not finite, for all k ≥ 0, ∃x ∈ A such that |x| ≥ k. Also, since
A ⊂ R, we know that K(x) = |x|. Hence, on input x (taking dlog ke bits), we enumerate all
x strings of length at least k and check if x ∈ A. On finding some x∗ ∈ A, we output x∗.
Since K(x∗) = |x∗| ≥ k, and our algorithm produces it on an input of length dlog ke, this is
a contradiction for large enough k.

3. If f : Σ∗ → Z+ is a computable function such that f(x) ≤ K(x) ∀x ∈ Σ∗, then show that f
must be bounded.
[15 points]

Solution: Suppose f is not bounded. Then for every k ≥ 0, there is a string x such that
f(x) ≥ k. Then the following algorithm outputs a string of Kolmogorov complexity at least
k given k as an input.

1

1. Enumerate all strings x of length at least k in lexicographic order and compute f(x) for
each till finding an x∗ such that f(x∗) ≥ k.

2. Output x∗.

The algorithm always terminates because a suitable x∗ always exists for any k ≥ 0. Since the
length of the input is dlog ke bits and the Kolmogorov complexity of the output is at least k,
this is a contradiction for large enough k.

4. (Sipser problem 7.17.) Prove that if P = NP then every language in P, except ∅ and Σ∗, is
NP-complete. Why can’t ∅ and Σ∗ be NP-complete?
[10 points]

Solution: Let A be any language in NP and let B be another language not equal to ∅ or
Σ∗. Then there exist strings x ∈ B and y /∈ B. To reduce an instance w of A to that of B,
we just check in polynomial time if w ∈ A. If yes, we output x and y when w /∈ A.

The languages ∅ and Σ∗ cannot be NP-complete, because to reduce a language A to a language
B, we need to map instances in A to instances in B and those outside A to outside B. However,
for B = ∅, there are no instances in B (and none outside B for B = Σ∗) which means there
cannot be such a reduction from any language A 6= ∅,Σ∗.

2

