U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 7
Professor Luca Trevisan 4/6/2007

Solutions to Problem Set 7

1. Let A and B be two languages. Then show that:

(a)
(b)

If A and B are in NP, then so are AU B and AN B.
If A and B are NP-complete, then AU B and AN B need not be NP-complete.

[10 4+ 15 = 25 points]

SOLUTION:

(a)

If A is in NP, then there is a deterministic Turing machine (verifier) V4 such that x € A
if and only if Jy |y| < p(|Jz|) and V4 accepts (z,y) (see Sipser, page 265-266). Similarly,
we have a machine Vp for B.

Then for the language A U B, we define the machine V4, which runs both V4 and
VB on the given input and accepts if either does. For x € AU B, there is a string ya
such that V4 accepts (x,y4) or a string Vg accepts (x,yp). Taking y to be y4 or yp
(whichever exists), Vaup will accept (z,y). Similarly, for AN B, we can define Vynp,
which takes an input (x,y4,yp) accepts if and only if V4 accepts (x,y4) and Vp accepts

<JJ, yB>
We argue about intersection first. Let L be any NP-complete language. Then we define
the languages

A=0L={0zx |z €L}
B=1L={lz |z € L}

Then we can see that both A and B are NP-complete. This is so because any reduction
from (say) SAT to L can be converted to a reduction to A by adding a 0 to the output
and similarly for B. It is also easy to see that they are both in NP if L is. But then
AN B = () which cannot be NP-complete.

One can derive the argument for union by exactly the same reasoning by noticing that
if A and B are NP-complete, then A and B are co-NP complete and showing that AU B
is not NP-complete is the same as showing that AN B is not co-NP complete. Thus, for
an NP-complete language L, we can take A = 0L and B = 1L. This gives

A=0L = (1{0,1}) U {0z | z € L}
B=1L = (0{0,1}*)U{lz |z € L}

Also, note that reductions to L can be easily modified to reductions to reductions to
A and B, by appending 0 and 1 respectively at the beginning. Thus, A and B are
NP-complete. However, AU B = {0,1}*, which cannot be NP-complete.

2. Let U = {{M,z,#')INDTM M accepts input x within ¢ steps on at least one branch}.
Show that U is N P-complete.
[15 points]

SOLUTION: Given any NP language L, we have an NDTM My such that Vx € L, My,
accepts = on at least one branch in at most pr(|z|) steps, where pr() is a fixed polynomial
depending on the machine. Also, My, does not accept any = ¢ L. Then, given z, we create
y = (Mp,z, #Pc(#D) in polynomial time. By the previous argument, z € L iff y € U. Thus,
U is NP-hard.

To show that U is also in NP, we can create an NDTM My, which given an input u =
(M, x,#"), simulates M on x for t steps. My nondeterministically guesses all the branches
of M and accepts u iff M accepts u. Since the input has length at least ¢ and we simulate
M for at most t steps, the running time is polynomial in the length of the input (note this
is the reason we need ¢ in unary). It is easy to see that My accepts exactly the language U,
thus proving U € NP. Hence, U is NP-complete.

. For a function g : N — N, we say a language L is in SIZE(g(n)) if there exists a family of
circuits C1, Cy, ... (with C; having 7 inputs and one output) such that:

e Vn € N the size of C), is at most g(n)
e Vxe{0,1}"z e L& Cy(z) =1

In the class we saw a proof that SIZE(2°(")) C SIZE(2") i.e. for every large enough n
there exists a function f : {0,1}" — {0,1} that is not computable by circuits of size 2°("),
This problem asks you to show such a “separation result” for a smaller function. Show that
SIZE(n3/100logn) € SIZE(n?).

[20 points]

SOLUTION: We saw is class that any circuit of size S can be described by 4S1log(2S) bits.

Hence, any circuit of size n3/100log n can be described by 4- 100nlj>gn -log (100’ign> < 12n3/100
bits. Thus, the number of functions in SIZE(n?/1001logn) is at most 912n%/100

However, we also know that any function on k bits can be computed by circuits of size at
most 3 - 2 — 4. We then consider the set B of all the functions which only look at the first
log(n?/5) bits of the input. There are 2°/% such functions. Hence, SIZE(n3/100logn) C B,

since 27°/5 > 212n°/100 " Byt all these functions can be computed by circuits of size at most
3.2l8(n*/5) _ 4 < 3n3/5 < n3. Hence B C SIZE(n?). Thus, we have

SIZE(n®/100logn) € B C SIZE(n®) = SIZE(n?/100logn) € SIZE(n®)

