
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 7
Professor Luca Trevisan 4/6/2007

Solutions to Problem Set 7

1. Let A and B be two languages. Then show that:

(a) If A and B are in NP, then so are A ∪B and A ∩B.

(b) If A and B are NP-complete, then A ∪B and A ∩B need not be NP-complete.

[10 + 15 = 25 points]

Solution:

(a) If A is in NP, then there is a deterministic Turing machine (verifier) VA such that x ∈ A
if and only if ∃y |y| ≤ p(|x|) and VA accepts 〈x, y〉 (see Sipser, page 265-266). Similarly,
we have a machine VB for B.
Then for the language A ∪ B, we define the machine VA∪B, which runs both VA and
VB on the given input and accepts if either does. For x ∈ A ∪ B, there is a string yA

such that VA accepts 〈x, yA〉 or a string VB accepts 〈x, yB〉. Taking y to be yA or yB

(whichever exists), VA∪B will accept 〈x, y〉. Similarly, for A ∩ B, we can define VA∩B,
which takes an input 〈x, yA, yB〉 accepts if and only if VA accepts 〈x, yA〉 and VB accepts
〈x, yB〉.

(b) We argue about intersection first. Let L be any NP-complete language. Then we define
the languages

A = 0L = {0x | x ∈ L}
B = 1L = {1x | x ∈ L}

Then we can see that both A and B are NP-complete. This is so because any reduction
from (say) SAT to L can be converted to a reduction to A by adding a 0 to the output
and similarly for B. It is also easy to see that they are both in NP if L is. But then
A ∩B = ∅ which cannot be NP-complete.
One can derive the argument for union by exactly the same reasoning by noticing that
if A and B are NP-complete, then A and B are co-NP complete and showing that A∪B
is not NP-complete is the same as showing that A∩B is not co-NP complete. Thus, for
an NP-complete language L, we can take A = 0L and B = 1L. This gives

A = 0L = (1{0, 1}∗) ∪ {0x | x ∈ L}

B = 1L = (0{0, 1}∗) ∪ {1x | x ∈ L}

Also, note that reductions to L can be easily modified to reductions to reductions to
A and B, by appending 0 and 1 respectively at the beginning. Thus, A and B are
NP-complete. However, A ∪B = {0, 1}∗, which cannot be NP-complete.

2. Let U = {〈M,x,#t〉|NDTM M accepts input x within t steps on at least one branch}.
Show that U is NP -complete.
[15 points]

1

Solution: Given any NP language L, we have an NDTM ML such that ∀x ∈ L, ML

accepts x on at least one branch in at most pL(|x|) steps, where pL() is a fixed polynomial
depending on the machine. Also, ML does not accept any x /∈ L. Then, given x, we create
y = 〈ML, x,#pL(|x|)〉 in polynomial time. By the previous argument, x ∈ L iff y ∈ U . Thus,
U is NP-hard.

To show that U is also in NP, we can create an NDTM MU , which given an input u =
〈M,x,#t〉, simulates M on x for t steps. MU nondeterministically guesses all the branches
of M and accepts u iff M accepts u. Since the input has length at least t and we simulate
M for at most t steps, the running time is polynomial in the length of the input (note this
is the reason we need t in unary). It is easy to see that MU accepts exactly the language U ,
thus proving U ∈ NP . Hence, U is NP-complete.

3. For a function g : N → N, we say a language L is in SIZE(g(n)) if there exists a family of
circuits C1, C2, . . . (with Ci having i inputs and one output) such that:

• ∀n ∈ N the size of Cn is at most g(n)

• ∀x ∈ {0, 1}n x ∈ L ⇔ Cn(x) = 1.

In the class we saw a proof that SIZE(2o(n)) (SIZE(2n) i.e. for every large enough n
there exists a function f : {0, 1}n → {0, 1} that is not computable by circuits of size 2o(n).
This problem asks you to show such a “separation result” for a smaller function. Show that
SIZE(n3/100 log n) (SIZE(n3).
[20 points]

Solution: We saw is class that any circuit of size S can be described by 4S log(2S) bits.
Hence, any circuit of size n3/100 log n can be described by 4· n3

100 log n ·log
(

n3

100 log n

)
< 12n3/100

bits. Thus, the number of functions in SIZE(n3/100 log n) is at most 212n3/100.

However, we also know that any function on k bits can be computed by circuits of size at
most 3 · 2k − 4. We then consider the set B of all the functions which only look at the first
log(n3/5) bits of the input. There are 2n3/5 such functions. Hence, SIZE(n3/100 log n) (B,
since 2n3/5 > 212n3/100. But all these functions can be computed by circuits of size at most
3 · 2log(n3/5) − 4 ≤ 3n3/5 < n3. Hence B ⊂ SIZE(n3). Thus, we have

SIZE(n3/100 log n) (B ⊂ SIZE(n3) ⇒ SIZE(n3/100 log n) (SIZE(n3)

2

