Solutions to Problem Set 7

1. Let A and B be two languages. Then show that:
(a) If A and B are in NP, then so are $A \cup B$ and $A \cap B$.
(b) If A and B are NP-complete, then $A \cup B$ and $A \cap B$ need not be NP-complete.
[10 $+15=25$ points]
Solution:
(a) If A is in NP, then there is a deterministic Turing machine (verifier) V_{A} such that $x \in A$ if and only if $\exists y|y| \leq p(|x|)$ and V_{A} accepts $\langle x, y\rangle$ (see Sipser, page 265-266). Similarly, we have a machine V_{B} for B.
Then for the language $A \cup B$, we define the machine $V_{A \cup B}$, which runs both V_{A} and V_{B} on the given input and accepts if either does. For $x \in A \cup B$, there is a string y_{A} such that V_{A} accepts $\left\langle x, y_{A}\right\rangle$ or a string V_{B} accepts $\left\langle x, y_{B}\right\rangle$. Taking y to be y_{A} or y_{B} (whichever exists), $V_{A \cup B}$ will accept $\langle x, y\rangle$. Similarly, for $A \cap B$, we can define $V_{A \cap B}$, which takes an input $\left\langle x, y_{A}, y_{B}\right\rangle$ accepts if and only if V_{A} accepts $\left\langle x, y_{A}\right\rangle$ and V_{B} accepts $\left\langle x, y_{B}\right\rangle$.
(b) We argue about intersection first. Let L be any NP-complete language. Then we define the languages

$$
\begin{aligned}
& A=0 L=\{0 x \mid x \in L\} \\
& B=1 L=\{1 x \mid x \in L\}
\end{aligned}
$$

Then we can see that both A and B are NP-complete. This is so because any reduction from (say) SAT to L can be converted to a reduction to A by adding a 0 to the output and similarly for B. It is also easy to see that they are both in NP if L is. But then $A \cap B=\emptyset$ which cannot be NP-complete.
One can derive the argument for union by exactly the same reasoning by noticing that if A and B are NP-complete, then \bar{A} and \bar{B} are co-NP complete and showing that $A \cup B$ is not NP-complete is the same as showing that $\bar{A} \cap \bar{B}$ is not co-NP complete. Thus, for an NP-complete language L, we can take $\bar{A}=0 \bar{L}$ and $\bar{B}=1 \bar{L}$. This gives

$$
\begin{aligned}
& A=\overline{0 \bar{L}}=\left(1\{0,1\}^{*}\right) \cup\{0 x \mid x \in L\} \\
& B=\overline{1 \bar{L}}=\left(0\{0,1\}^{*}\right) \cup\{1 x \mid x \in L\}
\end{aligned}
$$

Also, note that reductions to L can be easily modified to reductions to reductions to A and B, by appending 0 and 1 respectively at the beginning. Thus, A and B are NP-complete. However, $A \cup B=\{0,1\}^{*}$, which cannot be NP-complete.
2. Let $U=\left\{\left\langle M, x, \#^{t}\right\rangle \mid N D T M M\right.$ accepts input x within t steps on at least one branch $\}$. Show that U is $N P$-complete.
[15 points]

Solution: Given any NP language L, we have an NDTM M_{L} such that $\forall x \in L, M_{L}$ accepts x on at least one branch in at most $p_{L}(|x|)$ steps, where $p_{L}()$ is a fixed polynomial depending on the machine. Also, M_{L} does not accept any $x \notin L$. Then, given x, we create $y=\left\langle M_{L}, x, \#^{p_{L}(|x|)}\right\rangle$ in polynomial time. By the previous argument, $x \in L$ iff $y \in U$. Thus, U is NP-hard.
To show that U is also in NP, we can create an NDTM M_{U}, which given an input $u=$ $\left\langle M, x, \#^{t}\right\rangle$, simulates M on x for t steps. M_{U} nondeterministically guesses all the branches of M and accepts u iff M accepts u. Since the input has length at least t and we simulate M for at most t steps, the running time is polynomial in the length of the input (note this is the reason we need t in unary). It is easy to see that M_{U} accepts exactly the language U, thus proving $U \in N P$. Hence, U is NP-complete.
3. For a function $g: \mathbb{N} \rightarrow \mathbb{N}$, we say a language L is in $\operatorname{SIZE}(g(n))$ if there exists a family of circuits C_{1}, C_{2}, \ldots (with C_{i} having i inputs and one output) such that:

- $\forall n \in \mathbb{N}$ the size of C_{n} is at most $g(n)$
- $\forall x \in\{0,1\}^{n} x \in L \Leftrightarrow C_{n}(x)=1$.

In the class we saw a proof that $\operatorname{SIZE}\left(2^{o(n)}\right) \subsetneq \operatorname{SIZE}\left(2^{n}\right)$ i.e. for every large enough n there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that is not computable by circuits of size $2^{o(n)}$. This problem asks you to show such a "separation result" for a smaller function. Show that $\operatorname{SIZE}\left(n^{3} / 100 \log n\right) \subsetneq \operatorname{SIZE}\left(n^{3}\right)$.
[20 points]
Solution: We saw is class that any circuit of size S can be described by $4 S \log (2 S)$ bits. Hence, any circuit of size $n^{3} / 100 \log n$ can be described by $4 \cdot \frac{n^{3}}{100 \log n} \cdot \log \left(\frac{n^{3}}{100 \log n}\right)<12 n^{3} / 100$ bits. Thus, the number of functions in $\operatorname{SIZE}\left(n^{3} / 100 \log n\right)$ is at most $2^{12 n^{3}} / 100$.

However, we also know that any function on k bits can be computed by circuits of size at most $3 \cdot 2^{k}-4$. We then consider the set B of all the functions which only look at the first $\log \left(n^{3} / 5\right)$ bits of the input. There are $2^{n^{3} / 5}$ such functions. Hence, $\operatorname{SIZE}\left(n^{3} / 100 \log n\right) \subsetneq B$, since $2^{n^{3} / 5}>2^{12 n^{3} / 100}$. But all these functions can be computed by circuits of size at most $3 \cdot 2^{\log \left(n^{3} / 5\right)}-4 \leq 3 n^{3} / 5<n^{3}$. Hence $B \subset \operatorname{SIZE}\left(n^{3}\right)$. Thus, we have

$$
\operatorname{SIZE}\left(n^{3} / 100 \log n\right) \subsetneq B \subset \mathbf{S I Z E}\left(n^{3}\right) \Rightarrow \operatorname{SIZE}\left(n^{3} / 100 \log n\right) \subsetneq \operatorname{SIZE}\left(n^{3}\right)
$$

