
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 8
Professor Luca Trevisan 4/20/2007

Solutions to Problem Set 8

1. Define SETCOV ER to be
{(U, S1, . . . , Sm, k) | ∀i, Si ⊂ U , and there is I ⊆ {1, . . . ,m} with |I| = k and U =

⋃
i∈I{Si}

Show that SETCOV ER is NP-complete.
[20 points]

Solution: SET-COVER can be seen as a generalization of VERTEX COVER. For a given
graph G, consider each vertex as a set of the edges incident upon it. Formally, we define the
sets Su = {(u, v) ∈ E | v ∈ V } for all u ∈ V . Also, we take U = E and let k be the same as in
the vertex cover instance. Then a SET COVER of this family of sets corresponds exactly to
picking vertices (sets) such that at least one vertex corresponding to each edge is picked (i.e.
at least one set containing every element is picked). Hence, the graph G has a vertex cover of
size at most k if and only if the above instance has a set cover of size k. (Note that if there
is a cover of size less than k, then there is also one of size exactly k since we can always add
a few extra sets.)

To show that the problem is in NP, it suffices to note that given an I ⊆ {1, . . . ,m}, we can
verify in polynomial time that |I| = k and U =

⋃
i∈I{Si}.

2. Define the language

ShortestPath = {(G, k, s, t)| the shortest path from s to t in G has length k}

(a) Prove that ShortestPath is in NL.

(b) Prove that ShortestPath is in L if and only if L = NL.

[40 points]

Solution:

(a) Solution 1: We construct a NL-machine for ShortestPath as follows: on input
〈G, k, s, t〉, first compute rk−1 (the number of vertices reachable from s in at most k− 1
steps). Then, on input 〈G = (V,E), k, s, t〉 and rk−1 on the work tape,

d← 0
flag ← FALSE
for all w ∈ V do

p← s
for i← 1 to k − 1 do

non-deterministically pick a neighbor q of p
if p = w then

d← d + 1
if w = t reject
if w is a neighbor of t then

flag ← TRUE
if d < rk−1 reject
if flag then accept else reject

1

Solution 2: Observe that NLis closed under intersection, and that ShortestPath
= L1 ∩L2 where L1 = {〈G, k, s, t〉 | there is a path from s to t of length at most k} and
L1 = {〈G, k, s, t〉 | there is no path from s to t of length at most k − 1}. On the other
hand, it is clear that L1 ∈ NL and that L2 ∈ coNL = NL.

(b) Solution 1: It suffices to prove that PATH ≤L ShortestPath, since NL = coNL
and PATH is coNL-complete. Given an instance 〈G, s, t〉 of PATH, the log-space trans-
ducer for this reduction outputs 〈G′, n + 1, s, t〉 where n is the number of vertices in G,
and G′ is constructed from G by adding n new vertices and a path from s to t of length
n + 1 that goes through these new vertices.

Solution 2: If ShortestPath ∈ L, then we can solve PATH in logarithmic space by
invoking the logarithmic space machine for ShortestPath for k from 0 to the number
of vertices in the graph.

3. (Sipser 8.9) A ladder is a sequence of strings s1, s2, . . . , sk, wherein every string differs from
the preceding one in exactly one character. For example the following is a ladder of English
words, starting with “head” and ending with “free”: head, hear, near, fear, bear, beer, deer,
deed, feed, feet, fret, free.

Let LADDERDFA = {〈M, s, t〉 | M is a DFA and L(M) contains a ladder of strings, starting
with s and ending with t}. Show that LADDERDFA is in PSPACE.
[30 points]

Solution: It suffices to show that LADDER ∈ NPSPACE. The idea is as follows: given
〈M, s, t〉, reject if |s| 6= |t|. Otherwise, consider a graph G of exponential size whose vertices
are indexed by strings in Σ|s|, and there is a directed edge from w1 to w2 iff w1 and w2 differ
in exactly one character, and w1, w2 ∈ L(M). Then, 〈M, s, t〉 ∈ LADDER iff there is a path
from s to t in G. This we can check in NPSPACE by guessing the path (akin to the NL
algorithm for PATH), and at each step, storing only the name of current vertex (which is a
string in Σ|s|. To guess the path, at vertex w1, we will nondeterministic select a new vertex
w2 that differs from w1 in exactly one character, and verify that M accepts w2. (We can
ensure that the machine always halts by keeping a counter and incrementing it with each
guess, and rejecting when the counter hits |Σ||s|. This is because if there exists a chain from
s to t, then there exists one of length at most |Σ||s| by removing loops.)

2

