
U.C. Berkeley — CS172: Automata, Computability and Complexity Solutions to Problem Set 9
Professor Luca Trevisan 4/27/2007

Solutions to Problem Set 9

1. (Sipser 8.25) An undirected graph is bipartite if its nodes can be divided into two sets such that
all edges go from a node in one set to a node in the other set. Show that a graph is bipartite
iff it does not contain a cycle that contains an odd number of nodes. Let BIPARTITE =
{〈G〉 | G is a bipartite graph}. Show that BIPARTITE ∈ NL.
[25 points]

Solution: Dividing the graph into two sets is the same as 2-coloring the graph such that all
the edges are between vertices of different color. If the graph has an odd cycle, then the odd
cycle in particular cannot be 2-colored and hence the graph cannot be bipartite. If the graph
does not contain an odd cycle, we consider the DFS tree (or forest, if it is not connected)
of the graph and color the alternate levels (say) red and blue. By construction, all the tree
edges are between vertices of different color. Suppose an edge not in the tree connects two
vertices of the same color. But these vertices must be connected by a path of even length in
the tree and this extra edge will create an odd cycle, which is not possible. Hence, the above
2-coloring is a valid one which proves that the graph is bipartite.

We show that BIPARTITE ∈ coNL or BIPARTITE ∈ NL, which suffices since NL =
coNL. However, BIPARTITE is precisely the set of all graphs which contain an odd cycle.
We guess a starting vertex v, guess an (odd) cycle length l and go for l steps from v, guessing
the next vertex in the cycle at each step. If we come back to v (we can remember the starting
vertex in logspace), we found a tour of odd length. Since any odd tour must contain an odd
(simple) cycle, we accept and declare that the graph is non-bipartite.

2. (Sipser 8.23) Define UCY CLE = {〈G〉 | G is an undirected graph that contains a simple
cycle}. Show that UCY CLE ∈ L. (Note: G may not be connected.)
[20 points]

Hint: We can try to search the tree by always traversing the edges incident on a vertex in
lexicographic order i.e. if we come in through the ith edge, we go out through the (i + 1)th
edge or the first edge if the degree is i. How does this algorithm behave on a tree? How about
a graph with a cycle?

Solution: Note that the above process performs a DFS on a tree and we always come
back to a vertex through the edge we went out on. However, if the graph contains a cycle,
there must exist at least one vertex u and at least one starting edge (u, v) such that if we
start the traversal through (u, v), we will come back to u through an edge different that
(u, v). Hence, we enumerate all the vertices and all the edges incident on them, and start a
traversal through each one of them. If we come back to the starting vertex through an edge
different than the one we started on, we declare that the graph contains a cycle. Since we
can enumerate all vertices and edges in logspace and also remember the starting vertex and
edge using logarithmic space, this algorithm shows UCY CLE ∈ L.

3. We define the product of two n × n boolean matrices A and B as another n × n boolean
matrix C such that Cij = ∨n

k=1Aik ∧ Bkj . (We think of 0 as false and 1 as true for this
problem.)

1



(a) Show that boolean matrix multiplication can be done in logarithmic space.

(b) Using repeated squaring, argue that Ap can be computed in space O(log n log p).

(c) Show that if A is the adjacency matrix of a graph, then (Ak)ij = 1 if and only if there
is a path of length at most k from the vertex i to vertex j and is 0 otherwise.

(d) Use the above to give an alternative proof that NL ⊆ SPACE(log2 n).

[35 points]

Solution:

(a) To compute Cij , we maintain a counter t, read Ait, Btj , compute Ait ∧Btj and take an
‘OR’ with ∨t−1

k=1Aik ∧Bkj which we can keep stored. Since maintaining the counter takes
logarithmic space and all boolean operations take constant space, we can compute C in
logspace.

(b) To multiply k matrices, we generate the result entry by entry, by running a counter t
and generating the itth entry in the product of the first k − 1 and the tjth entry in the
last matrix. Inductively, we need to maintain k counters which can be done in O(k log n)
space. Finally, note that using repeated squaring, we can compute Ap using O(log p)
matrices, which are different powers of A. To generate each of these matrices, we just
need A and a single counter. Hence the total space needed is O(log p log n).

(c) We argue this by induction. The case k = 1 is easy since Aij = 1 iff there is an edge
between i and j. Assuming it to be true for k − 1, note that Ak

ij = ∨n
t=1A

k−1
it ∧ Atj ,

which is 1 iff for some t, Ak−1
it = 1 and Atj = 1. However, this means there is a path of

length k − 1 from i to t and an edge from t to j, which gives a path of length k from i
to j.

(d) Since PATH is NL-complete and we can check if there is a path (which can be of length
at most n) between any two vertices in a graph by computing An in O(log2 n) space,
NL ⊆ SPACE(log2 n).

2


