Last revised 4/29/2010
In this lecture, we first continue to talk about polynomial hierarchy. Then we prove the Gács-Sipser-Lautemann theorem that BPP is contained in the second level of the hierarchy.

1 The hierarchy

Definition 1 (Polynomial hierarchy) $L \in \Sigma_{k}$ iff there are polynomials p_{1}, \ldots, p_{k} and a polynomial time computable function F such that

$$
x \in L \Leftrightarrow \exists y_{1} . \forall y_{2} \ldots Q_{k} y_{k} . F\left(x, y_{1}, \ldots, y_{k}\right)=1 \quad \text { where } Q_{k}=\left\{\begin{array}{l}
\forall \text { if } k \text { is even } \\
\exists \text { if } k \text { is odd }
\end{array}\right.
$$

$L \in \Pi_{k}$ iff there are polynomials p_{1}, \ldots, p_{k} and a polynomial time computable function F such that

$$
x \in L \Leftrightarrow \forall y_{1} \cdot \exists y_{2} \ldots Q_{k}^{\prime} y_{k} \cdot F\left(x, y_{1}, \ldots, y_{k}\right)=1 \quad \text { where } Q_{k}^{\prime}=\left\{\begin{array}{l}
\exists \text { if } k \text { is even } \\
\forall \text { if } k \text { is odd }
\end{array}\right.
$$

For clarity, we omitted the conditions that each string y_{i} must be of polynomial length $\left(y_{i} \in\{0,1\}^{p_{i}(|x|)}\right)$.

One thing that is easy to see is that $\Pi_{k}=\mathrm{co} \Sigma_{k}$. Also, note that, for all $i \leq k-1$, $\Pi_{i} \subseteq \Sigma_{k}, \Sigma_{i} \subseteq \Sigma_{k}, \Pi_{i} \subseteq \Pi_{k}, \Sigma_{i} \subseteq \Pi_{k}$. This can be seen by noticing that the predicates F do not need to "pay attention to" all of their arguments, and so a statement involving k quantifiers can "simulate" a statement using less than k quantifiers.

Theorem 2 Suppose $\Pi_{k}=\Sigma_{k}$. Then $\Pi_{k+1}=\Sigma_{k+1}=\Sigma_{k}$.

Proof: For any language $L \in \Sigma_{k+1}$, we have that there exist polynomials p_{1}, \ldots, p_{k+1} and a polynomial time computable function F such that

$$
x \in L \Leftrightarrow \exists y_{1} . \forall y_{2} . \ldots Q_{k+1} y_{k+1} \cdot F\left(x, y_{1}, \ldots, y_{k+1}\right)=1
$$

where we did not explicitly stated the conditions $y_{i} \in\{0,1\}^{p_{i}(|x|)}$. Let us look at the right hand side of the equation. What is following $\exists y_{1}$ is a Π_{k} statement. Thus, there is a $L^{\prime} \in \Pi_{k}$ such that

$$
x \in L \Leftrightarrow \exists y_{1} \in\{0,1\}^{p_{1}(|x|)} .\left(x, y_{1}\right) \in L^{\prime}
$$

Under the assumption that $\Pi_{k}=\Sigma_{k}$, we have $L^{\prime} \in \Sigma_{k}$, which means that there are polynomials $p_{1}^{\prime}, \ldots, p_{k}^{\prime}$ and a polynomial time computable F^{\prime} such that

$$
\left(x, y_{1}\right) \in L^{\prime} \Leftrightarrow \exists z_{1} \cdot \forall z_{2} . \ldots Q_{k} z_{k} \cdot F^{\prime}\left(\left(x, y_{1}\right), z_{1}, \ldots, z_{k}\right)=1
$$

where we omitted the conditions $z_{i} \in\{0,1\}^{p_{i}^{\prime}(|x|)}$. So now we can show that

$$
\begin{aligned}
x \in L & \Leftrightarrow \exists y_{1} \cdot\left(x, y_{1}\right) \in L^{\prime} \\
& \Leftrightarrow \exists y_{1} \cdot\left(\exists z_{1} \cdot \forall z_{2} \ldots Q_{k} z_{k} \cdot F^{\prime}\left(\left(x, y_{1}\right), z_{1}, \ldots, z_{k}\right)=1\right) \\
& \left.\Leftrightarrow \exists\left(y_{1}, z_{1}\right) \cdot \forall z_{2} \ldots \ldots Q_{k} z_{k} \cdot F^{\prime \prime}\left(x,\left(y_{1}, z_{1}\right), z_{2}, \ldots, z_{k}\right)=1\right)
\end{aligned}
$$

And so $L \in \Sigma_{k}$.
Now notice that if \mathcal{C}_{1} and \mathcal{C}_{2} are two complexity classes, then $\mathcal{C}_{1}=\mathcal{C}_{2}$ implies co $\mathcal{C}_{1}=$ coC_{2}. Thus, we have $\Pi_{k+1}=\operatorname{co} \Sigma_{k+1}=\operatorname{co} \Sigma_{k}=\Pi_{k}=\Sigma_{k}$. So we have $\Pi_{k+1}=\Sigma_{k+1}=$ Σ_{k}.

$2 \quad \mathrm{BPP} \subseteq \Sigma_{2}$

This result was first shown by Sipser and Gács. Lautemann gave a much simpler proof which we give below.

Lemma 3 If L is in BPP then there is an algorithm A such that for every x,

$$
\underset{r}{\mathbb{P}}(A(x, r)=\text { right answer }) \geq 1-\frac{1}{3 m},
$$

where the number of random bits $|r|=m=|x|^{O(1)}$ and A runs in time $|x|^{O(1)}$.
Proof: Let \hat{A} be a BPP algorithm for L. Then for every x,

$$
\underset{r}{\mathbb{P}}(\hat{A}(x, r)=\text { wrong answer }) \leq \frac{1}{3},
$$

and \hat{A} uses $\hat{m}(n)=n^{o(1)}$ random bits where $n=|x|$.
Do $k(n)$ repetitions of \hat{A} and accept if and only if at least $\frac{k(n)}{2}$ executions of \hat{A} accept. Call the new algorithm A. Then A uses $k(n) \hat{m}(n)$ random bits and

$$
\underset{r}{\mathbb{P}}(A(x, r)=\text { wrong answer }) \leq 2^{-c k(n)}
$$

We can then find $k(n)$ with $k(n)=\Theta(\log \hat{m}(n))$ such that $\frac{1}{2^{c k(n)}} \leq \frac{1}{3 k(n) m(n)}$.

Theorem $4 \mathrm{BPP} \subseteq \Sigma_{2}$.

Proof: Let L be in BPP and A as in the claim. Then we want to show that

$$
x \in L \Longleftrightarrow \exists y_{1}, \ldots, y_{m} \in\{0,1\}^{m} \forall z \in\{0,1\}^{m} \bigvee_{i=1}^{m} A\left(x, y_{i} \oplus z\right)=1
$$

where m is the number of random bits used by A on input x.
Suppose $x \in L$. Then

$$
\begin{aligned}
& \underset{y_{1}, \ldots, y_{m}}{\mathbb{P}}\left(\exists z A\left(x, y_{1} \oplus z\right)=\cdots=A\left(x, y_{m} \oplus z\right)=0\right) \\
& \leq \sum_{z \in\{0,1\}^{m}} \underset{y_{1}, \ldots, y_{m}}{\mathbb{P}}\left(A\left(x, y_{1} \oplus z\right)=\cdots=A\left(x, y_{m} \oplus z\right)=0\right) \\
& \leq 2^{m} \frac{1}{(3 m)^{m}} \\
& <1
\end{aligned}
$$

So

$$
\begin{aligned}
\underset{y_{1}, \ldots, y_{m}}{\mathbb{P}}\left(\forall z \bigvee_{i} A\left(x, y_{i} \oplus z\right)\right) & =1-\underset{y_{1}, \ldots, y_{m}}{\mathbb{P}}\left(\exists z A\left(x, y_{1} \oplus z\right)=\cdots=A\left(x, y_{m} \oplus z\right)=0\right) \\
& >0 .
\end{aligned}
$$

So a sequence $\left(y_{1}, \ldots, y_{m}\right)$ exists, such that $\forall z . \bigvee_{i} A\left(x, y_{i} \oplus z\right)=1$.
Conversely suppose $x \notin L$. Then fix a sequence $\left(y_{1}, \ldots, y_{m}\right)$. We have

$$
\begin{aligned}
\underset{z}{\mathbb{P}}\left(\bigvee_{i} A\left(x, y_{i} \oplus z\right)\right) & \leq \sum_{i} \underset{z}{\mathbb{P}}\left(A\left(x, y_{i} \oplus z\right)=1\right) \\
& \leq m \cdot \frac{1}{3 m} \\
& =\frac{1}{3}
\end{aligned}
$$

So

$$
\begin{aligned}
\underset{z}{\mathbb{P}}\left(A\left(x, y_{1} \oplus z\right)=\cdots=A\left(x, y_{m} \oplus z\right)=0\right) & =\underset{z}{\mathbb{P}}\left(\bigvee_{i} A\left(x, y_{i} \oplus z\right)=0\right) \\
& \geq \frac{2}{3} \\
& >0
\end{aligned}
$$

So for all $y_{1}, \ldots, y_{m} \in\{0,1\}^{m}$ there is a z such that $\bigvee_{i} A\left(x, y_{i} \oplus z\right)=0$.

