Today we prove the Valiant-Vazirani theorem.
Theorem 1 (Valiant-Vazirani) Suppose there is a polynomial time algorithm that on input a CNF formula having exactly one satisfying assignment finds that assignment. (We make no assumption on the behaviour of the algorithm on other inputs.) Then $\mathbf{N P}=\mathbf{R P}$.

1 The Valiant-Vazirani Theorem

As discussed in the last lecture, our approach is the following: given a satisfiable formula ϕ and a number k such that ϕ has roughly 2^{k} satisfying assignments, we pick a random hash function $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$ from a family of pairwise independent hash functions, and we construct a formula $\psi(x)$ which is equivalent to $\phi(x) \wedge(h(x)=$ $0)$. With constant probability, ψ has precisely one satisfying assignment, and so we can pass it to our hypothetical algorithm, which finds a satisfying assignment for ψ and hence a satisfying assignment for ϕ.
If we are only given ϕ, we can try all possible values of k between 0 and n (where n is the number of variables in ϕ), and run the above procedure for each k. When the correct value of k is chosen, we have a constant probability of finding a satisfying assignment for ϕ.

Once we have a randomized algorithm that, given a satisfiable formula, finds a satisfying assignment with constant probability, we have an RP algorithm for 3SAT: run the assignment-finding algorithm, accept if it finds a satisfying assignment and reject otherwise. The existence of an RP algorithm for 3SAT implies that NP $\subseteq \mathbf{R P}$ because $\mathbf{R P}$ is closed under many-to-one reductions, and so $\mathbf{R P}=\mathbf{N P}$ because we have $\mathbf{R P} \subseteq \mathbf{N P}$ by definition.
The main calculation that we need to perform is to show that if we have a set of size roughly 2^{k}, and we hash its elements pairwise independently to $\{0,1\}^{k+2}$, then there is a constant probability that exactly one element is hashed to $(0, \ldots, 0)$.

Lemma 2 Let $T \subseteq\{0,1\}^{n}$ be a set such that $2^{k} \leq|T|<2^{k+1}$ and let H be a family of pairwise independent hash functions of the form $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$. Then if we pick h at random from H, there is a constant probability that there is a unique element $x \in T$ such that $h(x)=\mathbf{0}$. Precisely,

$$
\underset{h \in H}{\mathbb{P}}[|\{x \in T: h(x)=\mathbf{0}\}|=1] \geq \frac{1}{8}
$$

Proof: Let us fix an element $x \in T$. We want to compute the probability that x is the unique element of T mapped into $\mathbf{0}$ by h. Clearly,
$\underset{h}{\mathbb{P}}[h(x)=\mathbf{0} \wedge \forall y \in T-\{x\} . h(y) \neq \mathbf{0}]=\underset{h}{\mathbb{P}}[h(x)=\mathbf{0}] \cdot \underset{h}{\mathbb{P}}[\forall y \in T-\{x\} . h(y) \neq \mathbf{0} \mid h(x)=\mathbf{0}]$
and we know that

$$
\underset{h}{\mathbb{P}}[h(x)=\mathbf{0}]=\frac{1}{2^{k+2}}
$$

The difficult part is to estimate the other probability. First, we write

$$
\underset{h}{\mathbb{P}}[\forall y \in T-\{x\} . h(y) \neq \mathbf{0} \mid h(x)=\mathbf{0}]=1-\underset{h}{\mathbb{P}}[\exists y \in T-\{x\} . h(y)=\mathbf{0} \mid h(x)=\mathbf{0}]
$$

And then observe that

$$
\begin{aligned}
& \underset{h}{\mathbb{P}}[\exists y \in T-\{x\} . h(y)=\mathbf{0} \mid h(x)=\mathbf{0}] \\
\leq & \sum_{y \in|T|-\{x\}} \underset{h}{P}[h(y)=\mathbf{0} \mid h(x)=\mathbf{0}] \\
= & \sum_{y \in|T|-\{x\}} \frac{\mathbb{P}}{h}[h(y)=\mathbf{0}] \\
= & \frac{|T|-1}{2^{k+2}} \\
\leq & \frac{1}{2}
\end{aligned}
$$

Notice how we used the fact that the value of $h(y)$ is independent of the value of $h(x)$ when $x \neq y$.
Putting everything together, we have

$$
\underset{h}{\mathbb{P}}[\forall y \in T-\{x\} . h(y) \neq \mathbf{0} \mid h(x)=\mathbf{0}] \geq \frac{1}{2}
$$

and so

$$
\underset{h}{\mathbb{P}}[h(x)=\mathbf{0} \wedge \forall y \in T-\{x\} . h(y) \neq \mathbf{0}] \geq \frac{1}{2^{k+3}}
$$

To conclude the argument, we observe that the probability that there is a unique element of T mapped into $\mathbf{0}$ is given by the sum over $x \in T$ of the probability that x is the unique element mapped into $\mathbf{0}$ (all this events are disjoint, so the probability of their union is the sum of the probabilities). The probability of a unique element mapped into $\mathbf{0}$ is then at least $|T| / 2^{k+3}>1 / 8$.

Lemma 3 There is a probabilistic polynomial time algorithm that on input a CNF formula ϕ and an integer k outputs a formula ψ such that

- If ϕ is unsatisfiable then ψ is unsatisfiable.
- If ϕ has at least 2^{k} and less than 2^{k+1} satifying assignments, then there is a probability at least $1 / 8$ then the formula ψ has exactly one satisfying assignment.

Proof: Say that ϕ is a formula over n variables. The algorithm picks at random vectors $a_{1}, \ldots, a_{k+2} \in\{0,1\}^{n}$ and bits b_{1}, \ldots, b_{k+2} and produces a formula ψ that is equivalent to the expression $\phi(x) \wedge\left(a_{1} \cdot x+b_{1}=0\right) \wedge \ldots \wedge\left(a_{k+2} \cdot x+b_{k+2}=0\right)$. Indeed, there is no compact CNF expression to compute $a \cdot x$ if a has a lot of ones, but we can proceed as follows: for each i we add auxiliary variables $y_{1}^{i}, \ldots, y_{n}^{i}$ and then write a CNF condition equivalent to $\left.\left(y_{1}^{i}=x_{1} \wedge a_{i}[1]\right) \wedge \cdots \wedge\left(y_{n}^{i}=y_{n-1}^{i} \oplus\left(x_{n} \wedge a_{i}[n] \oplus b_{i}\right)\right)\right)$. Then ψ is the AND of the clauses in ϕ plus all the above expressions for $i=1,2, \ldots, k+2$.
By construction, the number of satisfying assignments of ψ is equal to the number of satisfying assignments x of ϕ such that $h_{a_{1}, \ldots, a_{k+2}, b_{1}, \ldots, b_{k+2}}(x)=\mathbf{0}$. If ϕ is unsatisfiable, then, for every possible choice of the a_{i}, ψ is also unsatisfiable.
If ϕ has between 2^{k} and 2^{k+1} assignments, then Lemma 2 implies that with probability at least $1 / 8$ there is exactly one satisfying assignment for ψ.

We can now prove the Valiant-Vazirani theorem.

Proof:[Of Theorem 1] It is enough to show that, under the assumption of the Theorem, 3SAT has an RP algorithm.

On input a formula ϕ, we construct formulae $\psi_{0}, \ldots, \psi_{n}$ by using the algorithm of Lemma 3 with parameters $k=0, \ldots, n$. We submit all formulae $\psi_{0}, \ldots, \psi_{n}$ to the algorithm in the assumption of the Theorem, and accept if the algorithm can find a satisfying assignment for at least one of the formulae. If ϕ is unsatisfiable, then all the formulae are always unsatisfiable, and so the algorithm has a probability zero of accepting. If ϕ is satisfiable, then for some k it has between 2^{k} and 2^{k+1} satisfying assignments, and there is a probability at least $1 / 8$ that ψ_{k} has exactly one satisfying assignment and that the algorithm accepts. If we repeat the above procedure t times, and accept if at least one iteration accepts, then if ϕ is unsatisfiable we still have probability zero of accepting, otherwise we have probability at least $1-(7 / 8)^{t}$ of accepting, which is more than $1 / 2$ already for $t=6$.

