HW1

Notes	
Due 2012/01/20.	1.1
Office hours are holiday-independent. We will have OH on Monday 9th, 6:30pm-8:3pm.	1.2
Problem 1	
Given:	1.3
$\mathrm{E} = \mathrm{DTime}\Big(2^{O(n)}\Big)$	1.4
$NE = NTime \left(2^{O(n)}\right)$	1.5
Prove:	1.6
If $E \neq NE$ then $P \neq NP$.	1.7
Problem 2	
Given:	1.8
Let Min-Equiv-CNF (f) be the smallest CNF equivalent to f .	1.9
	1.10
CNFs f_1, f_2 are equivalent if:	1.11
f_1, f_2 have the same set of variables and	1.12
f_1, f_2 have the same set of satisfying assignments.	1.13
	1.14
f_1 is smaller than f_2 if:	1.15
$length(f_1) \le length(f_2)$ or	1.16
$length(f_1) = length(f_2)$ and f_1 appears lexicographically before f_2	1.17
	1.18
The length of a clause is the number of variables in the clause.	1.19
The length of a CNF is the sum of the lengths of all clauses.	1.20
Prove:	1.21
If $P = NP$, then Min-Equiv-CNF is solvable in polynomial time.	1.22