Notes

Due 2012/01/20.
Office hours are holiday-independent. We will have OH on Monday 9th, 6:30pm-8:3pm.

Problem 1

Given:
$\mathrm{E}=\mathrm{DTime}\left(2^{O(n)}\right)$
$\mathrm{NE}=\operatorname{NTime}\left(2^{O(n)}\right)$
Prove:

```
If E }\not=NE\mathrm{ then P}\not=NP
```1.7
Problem 2
Given:1.8
Let Min-Equiv-CNF \((f)\) be the smallest CNF equivalent to \(f\). 1.9
CNFs \(f_{1}, f_{2}\) are equivalent if: 1.11
\(f_{1}, f_{2}\) have the same set of variables and 1.12
\(f_{1}, f_{2}\) have the same set of satisfying assignments. 1.13
\(f_{1}\) is smaller than \(f_{2}\) if: 1.15
length \(\left(f_{1}\right) \leq \operatorname{length}\left(f_{2}\right)\) or 1.16
length \(\left(f_{1}\right)=\) length \(\left(f_{2}\right)\) and \(f_{1}\) appears lexicographically before \(f_{2}\) 1.17
The length of a clause is the number of variables in the clause. 1.19
The length of a CNF is the sum of the lengths of all clauses. 1.20
Prove: 1.21
If \(\mathrm{P}=\mathrm{NP}\), then Min-Equiv-CNF is solvable in polynomial time. 1.22```

