## DUE: Friday January 27th, 5:00pm

## Problem 1

Let  $\operatorname{size}(f)$  be the size of the smallest circuit that encodes f. Let  $T(n) \leq \frac{2^n}{10n}$ . Prove: There exists  $f: \{0,1\}^n \to \{0,1\}$  such that  $T(n) < \operatorname{size}(f) \leq T(n) + 10n$ .

## Problem 2

 $L \in MajorityP$  if and only if there exists a probabilistic polynomial time TM  $M_L$  such that

$$\Pr\left[M_L(x) \text{ accepts}\right] = \begin{cases} \leq 1/2 & \text{if } x \notin L \\ > 1/2 & \text{if } x \in L \end{cases}$$

Prove: If P = MajorityP, then P = NP.

## Problem 3

Prove: There exists a decidable L such that  $L \in P/\text{poly}$  and  $L \notin P$ .