DUE: Friday January 27th, 5:00pm

Problem 1

Let size (f) be the size of the smallest circuit that encodes f. Let $T(n) \leq \frac{2^{n}}{10 n}$.
Prove: There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $T(n)<\operatorname{size}(f) \leq T(n)+10 n$.

Problem 2

$L \in$ MajorityP if and only if there exists a probabilistic polynomial time $\mathrm{TM} M_{L}$ such that

$$
\operatorname{Pr}\left[M_{L}(x) \text { accepts }\right]= \begin{cases}\leq 1 / 2 & \text { if } x \notin L \\ >1 / 2 & \text { if } x \in L\end{cases}
$$

Prove: If $\mathrm{P}=$ MajorityP, then $\mathrm{P}=\mathrm{NP}$.

Problem 3

Prove: There exists a decidable L such that $L \in \mathrm{P} /$ poly and $L \notin \mathrm{P}$.

