DUE: Friday February 10th, 5:00pm

Problem 1

A cycle of a directed graph G = (V, E) is a sequence $(v_0, ..., v_{k-1})$ of vertices such that:

$$\forall 0 \le i < j < k: v_i \ne v_j$$

 $\forall 0 \le i < k: (v_i, v_{(i+1)\%k}) \in E$

Let #Cycle(G) be the number of cycles in graph G.

Note: (v_0, v_1, v_2) and (v_1, v_2, v_0) are considered two different cycles.

Prove: If there is a deterministic polynomial time 2-approx to #Cycle, then P = NP. Hint: You may use, without proof, that Directed Hamiltonian Cycle is NP-complete.

Problem 2

Prove: If P = NP, then $Exp \not\subset CircuitSize(2^n/10n)$.

Problem 3

Let $\{\mathcal{D}_n\}$ be a family of distributions where each \mathcal{D}_n is a distribution over $\{0,1\}^n$.

We say that $\{\mathcal{D}_n\}$ is **polynomial time sampleable** if there exists a probabilistic polynomial time turing machine A such that:

$$\forall n \ \forall x \in \mathcal{D}_n : \Pr[A(1^n) = x] = \mathcal{D}_n(x).$$

We say that $\{\mathcal{D}_n\}$ is **polynomial time computable** if there exists a deterministic polynomial time turing machine A such that:

$$\forall n \ \forall x \in \mathcal{D}_n : A(x) = \sum_{y < x} \Pr[\mathcal{D}_n(y)].$$

Prove: If all polynomial time sampleable distributions are polynomial time computable, then $P = P^{\#P}$.