
Stanford University — CS254: Computational Complexity Notes 3
Luca Trevisan January 18, 2012

Notes for Lecture 3

In this lecture we introduce the computational model of boolean circuits and prove
that polynomial size circuits can simulate all polynomial time computations, we talk about
randomized algorithms, and we show that Boolean circuits can simulate randomized algo-
rithms.

1 Circuits

A circuit C has n inputs, m outputs, and is constructed with AND gates, OR gates and
NOT gates. Each gate has in-degree 2 except the NOT gate which has in-degree 1. The
out-degree can be any number. A circuit must have no cycle. See Figure 1.

A circuit C with n inputs and m outputs computes a function fC : {0, 1}n → {0, 1}m.
See Figure 2 for an example.

AND

AND

 OR

x1 x2 x3 x4 nx

1z 2z zm

NOT

. . .

. . .

Figure 1: A Boolean circuit.

Define SIZE(C) = # of AND and OR gates of C. By convention, we do not count the
NOT gates.

To be compatible with other complexity classes, we need to extend the model to arbitrary
input sizes:

Definition 1 A language L is solved by a family of circuits {C1, C2, . . . , Cn, . . .} if for every
n ≥ 1 and for every x s.t. |x| = n,

1

NOT

AND

 OR

AND

NOT

x1 x2

circuits
XOR

x3 x4

Figure 2: A circuit computing the boolean function fC(x1x2x3x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

x ∈ L ⇐⇒ fCn(x) = 1.

Definition 2 Say L ∈ SIZE(s(n)) if L is decided by a family {C1, C2, . . . , Cn, . . .} of
circuits, where Ci has at most s(i) gates.

2 Relation to other complexity classes

Unlike other complexity measures, like time and space, for which there are languages of
arbitrarily high complexity, the size complexity of a problem is always at most exponential.

Theorem 3 For every language L, L ∈ SIZE(O(2n)).

Proof: We need to show that for every 1-output function f : {0, 1}n → {0, 1}, f has
circuit size O(2n).

Use the identity f(x1x2 . . . xn) = (x1∧f(1x2 . . . xn))∨ (x1∧f(0x2 . . . xn)) to recursively
construct a circuit for f , as shown in Figure 3.

The recurrence relation for the size of the circuit is: s(n) = 3 + 2s(n− 1) with base case
s(1) = 1, which solves to s(n) = 2 · 2n − 3 = O(2n). 2

The exponential bound is nearly tight.

Theorem 4 There are languages L such that L 6∈ SIZE(o(2n/n)). In particular, for every
n ≥ 11, there exists f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size 2n/4n.

2

Figure 3: A circuit computing any function f(x1x2 . . . xn) of n variables assuming circuits
for two functions of n− 1 variables.

Proof: This is a counting argument. There are 22n functions f : {0, 1}n → {0, 1}, and we
claim that the number of circuits of size s is at most 2O(s log s), assuming s ≥ n. To bound the
number of circuits of size s we create a compact binary encoding of such circuits. Identify
gates with numbers 1, . . . , s. For each gate, specify where the two inputs are coming from,
whether they are complemented, and the type of gate. The total number of bits required
to represent the circuit is

s× (2 log(n+ s) + 3) ≤ s · (2 log 2s+ 3) = s · (2 log 2s+ 5).

So the number of circuits of size s is at most 22s log s+5s, and this is not sufficient to
compute all possible functions if

22s log s+5s < 22n .

This is satisfied if s ≤ 2n

4n and n ≥ 11. 2

The following result shows that efficient computations can be simulated by small circuits.

Theorem 5 If L ∈ DTIME(t(n)), then L ∈ SIZE(O(t2(n))).

Proof: Let L be a decision problem solved by a machine M in time t(n). Fix n and x s.t.
|x| = n, and consider the t(n)× t(n) tableau of the computation of M(x). See Figure 4.

Assume that each entry (a, q) of the tableau is encoded using k bits. By Proposition
3, the transition function {0, 1}3k → {0, 1}k used by the machine can be implemented by
a “next state circuit” of size k · O(23k), which is exponential in k but constant in n. This
building block can be used to create a circuit of size O(t2(n)) that computes the complete
tableau, thus also computes the answer to the decision problem.This is shown in Figure 5.

3

x1q0 x2 xn

.

.

. .
.
.

q

xx3 4

. . .

a b c d etime

tape position

Figure 4: t(n)×t(n) tableau of computation. The left entry of each cell is the tape symbol at
that position and time. The right entry is the machine state or a blank symbol, depending
on the position of the machine head.

Figure 5: Circuit to simulate a Turing machine computation by constructing the tableau.

4

2

Corollary 6 P ⊆ SIZE(nO(1)).

On the other hand, it’s easy to show that P 6= SIZE(nO(1)), and, in fact, one can define
languages in SIZE(O(1)) that are undecidable.

An equivalent characterization of languages decidable by polynomial size circuits can be
given using the notion of advice.

Definition 7 A language L can be decided in time t(n) and advice a(n) if there is an
algorithm A(·, ·) runnint in time ≤ t(n) on inputs of length n, such that for every input
length n there exists an “advice” string sn of length ≤ a(n) such that for every x of length
n

x ∈ L⇔ A(x, sn) accepts .

We denote by P/poly the class of languages that can be decided in polynomial time using
advice of polynomial length.

Theorem 8 P/poly = SIZE(nO(1)).

Proof: Suppose that L ∈ SIZE(nO(1)) and consider the circuit evaluation algorithm A
that on input a string x and a circuit C outputs C(x). Clearly A is a polynomial time
algorithm, and it witnesses L ∈ P/poly, by using a minimal-size circuit for L ∩ {0, 1}n as
the advice string for inputs of length n.

Suppose that L ∈ P/poly, and let A be the advice algorithm. Then, for every input
length n, we can construct a circuit C of size nO(1) such that, for the appropriate advice
string sn, we have C(x, sn) = 1 iff x ∈ L. Hard-wire the string sn into the circuit. 2

3 Randomized Algorithms

First we are going to describe the probabilistic model of computation. In this model an
algorithm A gets as input a sequence of random bits r and the ”real” input x of the problem.
The output of the algorithm is the correct answer for the input x with some probability.

Definition 9 An algorithm A is called a polynomial time probabilistic algorithm if the size
of the random sequence |r| is polynomial in the input |x| and A() runs in time polynomial
in |x|.

If we want to talk about the correctness of the algorithm, then informally we could say that
for every input x we need P[A(x, r) = correct answer for x] ≥ 2

3 . That is, for every input
the probability distribution over all the random sequences must be some constant bounded
away from 1

2 . Let us now define the class BPP.

5

Definition 10 A decision problem L is in BPP if there is a polynomial time algorithm A
and a polynomial p() such that :

∀x ∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≥ 2/3

∀x 6∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≤ 1/3

We can see that in this setting we have an algorithm with two inputs and some con-
straints on the probabilities of the outcome. In the same way we can also define the class
P as:

Definition 11 A decision problem L is in P if there is a polynomial time algorithm A and
a polynomial p() such that :

∀x ∈ L : P
r∈{0,1}p(|x|)

[A(x, r) = 1] = 1

∀x 6∈ L : P
r∈{0,1}p(|x|)

[A(x, r) = 1] = 0

Similarly, we define the classes RP and ZPP.

Definition 12 A decision problem L is in RP if there is a polynomial time algorithm A
and a polynomial p() such that:

∀x ∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≥ 1/2

∀x 6∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≤ 0

Definition 13 A decision problem L is in ZPP if there is a polynomial time algorithm A
whose output can be 0, 1, ? and a polynomial p() such that :

∀x P
r∈{0,1}p(|x|)

[A(x, r) =?] ≤ 1/2

∀x, ∀r such that A(x, r) 6=?.(A(x, r) = 1 ⇔ x ∈ L)

4 Relations between complexity classes

After defining these probabilistic complexity classes, let us see how they are related to other
complexity classes and with each other.

Theorem 14 RP⊆NP.

Proof: Suppose we have a RP algorithm for a language L. Then this algorithm is can
be seen as a “verifier” showing that L is in NP. If x ∈ L then there is a random sequence
r, for which the algorithm answers yes, and we think of such sequences r as witnesses that
x ∈ L. If x 6∈ L then there is no witness. 2

We can also show that the class ZPP is no larger than RP.

6

Theorem 15 ZPP⊆RP.

Proof: We are going to convert a ZPP algorithm into an RP algorithm. The construction
consists of running the ZPP algorithm and anytime it outputs ?, the new algorithm will
answer 0. In this way, if the right answer is 0, then the algorithm will answer 0 with
probability 1. On the other hand, when the right answer is 1, then the algorithm will give
the wrong answer with probability less than 1/2, since the probability of the ZPP algorithm
giving the output ? is less than 1/2. 2

Another interesting property of the class ZPP is that it’s equivalent to the class of
languages for which there is an average polynomial time algorithm that always gives the
right answer. More formally,

Theorem 16 A language L is in the class ZPP if and only if L has an average polynomial
time algorithm that always gives the right answer.

Proof: First let us clarify what we mean by average time. For each input x we take the
average time of A(x, r) over all random sequences r. Then for size n we take the worst time
over all possible inputs x of size |x| = n. In order to construct an algorithm that always
gives the right answer we run the ZPP algorithm and if it outputs a ?, then we run it again.
Suppose that the running time of the ZPP algorithm is T , then the average running time
of the new algorithm is:

Tavg =
1

2
· T +

1

4
· 2T + . . .+

1

2k
· kT = O(T)

Now, we want to prove that if the language L has an algorithm that runs in polynomial
average time t(|x|), then this is in ZPP. We run the algorithm for time 2t(|x|) and output
a ? if the algorithm has not yet stopped. It is straightforward to see that this belongs to
ZPP. First of all, the worst running time is polynomial, actually 2t(|x|). Moreover, the
probability that our algorithm outputs a ? is less than 1/2, since the original algorithm has
an average running time t(|x|) and so it must stop before time 2t(|x|) at least half of the
times. 2

Let us now prove the fact that RP is contained in BPP.

Theorem 17 RP⊆BPP

Proof: We will convert an RP algorithm into a BPP algorithm. In the case that the input
x does not belong to the language then the RP algorithm always gives the right answer, so
it certainly satisfies that BPP requirement of giving the right answer with probability at
least 2/3. In the case that the input x does belong to the language then we need to improve
the probability of a correct answer from at least 1/2 to at least 2/3.

Let A be an RP algorithm for a decision problem L. We fix some number k and define
the following algorithm:

• input: x,

• pick r1, r2, . . . , rk

7

• if A(x, r1) = A(x, r2) = . . . = A(x, rk) = 0 then return 0

• else return 1

Let us now consider the correctness of the algorithm. In case the correct answer is 0 the
output is always right. In the case where the right answer is 1 the output is right except
when all A(x, ri) = 0.

if x 6∈ L P
r1,...,rk

[Ak(x, r1, . . . , rk) = 1] = 0

if x ∈ L P
r1,...,rk

[Ak(x, r1, . . . , rk) = 1] ≥ 1−
(

1

2

)k
It is easy to see that by choosing an appropriate k the second probability can go arbitrarily
close to 1. In particular, choosing k = 2 suffices to have a probability larger than 2/3, which
is what is required by the definition of BPP. In fact, by choosing k to be a polynomial in
|x|, we can make the probability exponentially close to 1. This means that the definition of
RP that we gave above would have been equivalent to a definition in which, instead of the
bound of 1/2 for the probability of a correct answer when the input is in the language L,

we had have a bound of 1−
(

1
2

)q(|x|)
, for a fixed polynomial q. 2

5 Adleman’s Theorem

Let, now, A be a BPP algorithm for a decision problem L. Then, we fix k and define the
following algorithm A(k):

• input: x

• pick r1, r2, . . . , rk

• c =
∑k

i=1A(x, ri)

• if c ≥ k
2 then return 1

• else return 0

IIf we start from a randomized algorithm that provides the correct answer only with
probability slightly higher than half, then repeating the algorithm many times with inde-
pendent randomness will make the right answer appear the majority of the times with very
high probability.

More formally, we have the following theorem.

8

Theorem 18 (Chernoff Bound) Suppose X1, . . . , Xk are independent random variables
with values in {0, 1} and for every i, P[Xi = 1] = pi. Then, for any ε > 0:

P

[
k∑
i=1

Xi >
k∑
i=1

pi + kε

]
< e−2ε2k

P

[
k∑
i=1

Xi <

k∑
i=1

pi − kε

]
< e−2ε2k

The Chernoff bounds will enable us to bound the probability that our result is far from the
expected. Indeed, these bounds say that this probability is exponentially small with respect
to k.

Let us now consider how the Chernoff bounds apply to the algorithm we described
previously. We fix the input x and call p = Pr[A(x, r) = 1] over all possible random
sequences. We also define the independent 0/1 random variables X1, . . . , Xk such that
Xi = 1 if and only if A(x, ri) outputs the correct answer.

First, suppose x ∈ L. Then the algorithm A(k)(x, r1, . . . , rk) outputs the right answer
1, when

∑
iXi ≥ k/2. So, the algorithm makes a mistake when

∑
iXi < k/2.

We now apply the Chernoff bounds to bound this probability.

P[A(k)outputs the wrong answer on x]

= P[
∑
i

Xi <
k
2]

≤ P[
∑
i

Xi − kp ≤ −k
6]

≤ e−k/18

= 2−Ω(k)

The probability is exponentially small in k. The same reasoning applies also for the
case where x 6∈ L. Further, it is easy to see that by choosing k to be a polynomial in |x|
instead of a constant, we can change the definition of a BPP algorithm and instead of the
bound of 1

3 for the probability of a wrong answer, we could equivalently have a bound of

1/2− 1/q(|x|) or 2−q(|x|), for a fixed polynomial q.
Would it be equivalent to have a bound of 1/2− 2−q(|x|)?

Definition 19 PP is the set of problems that can be solved by a nondeterministic Turing
machine in polynomial time where the acceptance condition is that a majority (more than
half) of computation paths accept.

Although superficially similar to BPP, PP is a very powerful class; PPP (polynomial
time computations with an oracle for PP) includes all of NP, quantum polynomial time
BQP, and the entire polynomial hierarchy Σ1 ⊆ Σ2 ⊆ . . . which we will define later.

Now, we are going to see how the probabilistic complexity classes relate to circuit com-
plexity classes and specifically prove that the class BPP has polynomial size circuits.

9

Theorem 20 (Adleman) BPP ⊆ SIZE(nO(1))

Proof: Let L be in the class BPP. Then by definition, there is a polynomial time algorithm
A and a polynomial p, such that for every input x

P
r∈{0,1}p(|x|)

[A(x, r) = wrong answer for x] ≤ 2−(n+1)

This follows from our previous conclusion that we can replace 1
3 with 2−q(|x|). We now fix

n and try to construct a circuit Cn, that solves L on inputs of length n.

Claim 21 There is a random sequence r ∈ {0, 1}p(n) such that for every x ∈ {0, 1}n A(x, r)
is correct.

Proof: Informally, we can see that, for each input x of length n, the number of random
sequences r that give the wrong answer is exponentially small. Therefore, even if we assume
that these sequences are different for every input x, their sum is still less than the total
number of random sequences. Formally, let’s consider the probability over all sequences
that the algorithm gives the right answer for all input. If this probability is greater than 0,
then the claim is proved.

P
r
[for every x,A(x, r) is correct] = 1− P

r
[∃x,A(x, r) is wrong]

the second probability is the union of 2n possible events for each x. This is bounded by the
sum of the probabilities.

≥ 1−
∑

x∈{0,1}n
P
r
[A(x, r)is wrong]

≥ 1− 2n · 2−(n+1)

≥ 1

2

2

So, we proved that at least half of the random sequences are correct for all possible
input x. Therefore, it is straightforward to see that we can simulate the algorithm A(·, ·),
where the first input has length n and the second p(n), by a circuit of size polynomial in n.

All we have to do is find a random sequence which is always correct and build it inside
the circuit. Hence, our circuit will take as input only the input x and simulate A with input
x and r for this fixed r. Of course, this is only an existential proof, since we don’t know
how to find this sequence efficiently. 2

In general, the hierarchy of complexity classes looks like the following picture, if we
visualize all classes that are not known to be equal as distinct.

10

It is, however, generally conjectured that P = BPP, in which case the complexity map
greatly simplifies:

11

	Circuits
	Relation to other complexity classes
	Randomized Algorithms
	Relations between complexity classes
	Adleman's Theorem

