Notes for Lecture 6

1 Approximate Counting with an NP oracle

We complete the proof of the following result:
Theorem 1 For every counting problem $\# A$ in $\# \mathbf{P}$, there is a probabilistic algorithm C that on input x, computes with high probability a value v such that

$$
\begin{equation*}
(1-\epsilon) \# A(x) \leq v \leq(1+\epsilon) \# A(x) \tag{1}
\end{equation*}
$$

in time polynomial in $|x|$ and in $\frac{1}{\epsilon}$, using an oracle for NP.
Given what we proved in the previous lecture, it only remains to develop an approximate comparison algorithm for \#CSAT, that is, an algorithm a - comp such that for every circuit C :

- If $\# C S A T(C) \geq 2^{k+1}$ then a $-\operatorname{comp}(C, k)=$ YES with high probability;
- If $\# C S A T(C)<2^{k}$ then a $-\operatorname{comp}(C, k)=\mathrm{NO}$ with high probability.

The idea of the proof is to pick a random function $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$, and then consider the number of satisfying assignments for the circuit $C_{h}(x):=C(x) \wedge(h(x)=\mathbf{0})$. If $\# \operatorname{CSAT}(C) \geq 2^{k+1}$ then, on average over the choice of $h, C_{h}(x)$ has at least two satisfying assignments, but if $\# \operatorname{CSAT}(C) \geq 2^{k+1}$ then, on average over the choice of $h, C_{h}(x)$ has less than one satisfying assignments. Checking if C_{h} is satisfiable is a test that we would expect to distinguish the two cases.

To make this argument rigorous, we cannot pick the function h uniformly at random among all functions, because then h would be an object requiring an exponential size description, and a description of h (in the form of an evaluation algorithm) has to be part of the circuit C_{h}. Instead we will pick h from a pairwise independent distribution of functions. To improve the distinguishing probability and simplify the analysis, we will work with functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k-5}$, and we will treat the case $k \leq 5$ separately.

1.1 Pairwise independent hash functions

Definition 2 Let H be a distribution over functions of the form $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. We say that H is a pairwise independent distribution of hash functions if for every two different inputs $x, y \in\{0,1\}^{n}$ and for every two possible outputs $s, t \in\{0,1\}^{m}$ we have

$$
\underset{h \in H}{\mathbb{P}}[h(x)=s \wedge h(y)=t]=\frac{1}{2^{2 m}}
$$

Another way to look at the definition is that for every $x \neq y$, when we pick h at random then the random variables $h(x)$ and $h(y)$ are independent and uniformly distributed. In particular, for every $x \neq y$ and for every s, t we have

$$
\underset{h}{\mathbb{P}}[h(x)=s \mid h(y)=t]=\underset{h}{\mathbb{P}}[h(x)=s]
$$

A simple construction of pairwise independent hash functions is as follows: pick a matrix $A \in\{0,1\}^{m \times n}$ and a vector $b \in\{0,1\}^{m}$ uniformly at random, and then define the function

$$
h_{A, b}(x):=A x+b
$$

where the matrix product and vector addition operations are performed over the field \mathbb{F}_{2}. (That is, they are performed modulo 2.)

To see that the pairwise independence property is satisfied, consider any two distinct inputs $x, y \in\{0,1\}^{n}$ and any two outputs $s, t \in\{0,1\}^{m}$. If we call a_{1}, \ldots, a_{m} the rows of A then we have

$$
\underset{A, b}{\mathbb{P}}[A x+b=s \wedge A y+b=t]=\prod_{i=1}^{m}\left[a_{i}^{T} x+b_{i}=s_{i} \wedge a_{i}^{T} y+b_{i}=t_{i}\right]
$$

because the events ($a_{i}^{T} x+b_{i}=s_{i} \wedge a_{i}^{T} y+b_{i}=t_{i}$) are all mutually independent. The condition ($a_{i}^{T} x+b_{i}=s_{i} \wedge a_{i}^{T} y+b_{i}=t_{i}$) can be equivalently rewritten as

$$
a_{i}^{T} x-s_{i}=a_{i}^{T} y-t_{i} \wedge b_{i}=a_{i}^{T} x-s_{i}
$$

and as

$$
a_{i}^{T} \cdot(x-y)=s_{i}-t_{i} \wedge b_{i}=a_{i}^{T} x-s_{i}
$$

and its probability is

$$
\begin{gathered}
\mathbb{P}\left[a_{i}^{T} \cdot(x-y)=s_{i}-t_{i} \wedge b_{i}=a_{i}^{T} x-s_{i}\right] \\
=\mathbb{P}\left[a_{i}^{T} \cdot(x-y)=s_{i}-t_{i}\right] \cdot \mathbb{P}\left[b_{i}=a_{i}^{T} x-s_{i} \mid a_{i}^{T} \cdot(x-y)=s_{i}-t_{i}\right] \\
=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
\end{gathered}
$$

Because $x-y$ is a non-zero vector, and so $a_{i}^{T} \cdot(x-y)$ is a vector bit, and because b_{i} is a random bit independent of x, y.

In conclusion, we have

$$
\underset{A, b}{\mathbb{P}}[A x+b=s \wedge A y+b=t]=\left(\frac{1}{4}\right)^{m}
$$

as desired.
We will use the following fact about pairwise independent hash functions.

Lemma 3 Let H be a distribution of pairwise independent hash functions $h\{0,1\}^{n} \rightarrow$ $\{0,1\}^{m}$, and Let $S \subset\{0,1\}^{n}$. Then, for every t

$$
\begin{equation*}
\underset{h \in H}{\mathbb{P}}\left[\left||\{a \in S: h(a)=0\}|-\frac{|S|}{2^{m}}\right| \geq t\right] \leq \frac{|S|}{t^{2} 2^{m}} \tag{2}
\end{equation*}
$$

Proof: We will use Chebyshev's Inequality to bound the failure probability. Let $S=$ $\left\{a_{1}, \ldots, a_{k}\right\}$, and pick a random $h \in H$. We define random variables X_{1}, \ldots, X_{k} as

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if } h\left(a_{i}\right)=0 \tag{3}\\
0 \text { otherwise }
\end{array}\right.
$$

Clearly, $|\{a \in S: h(a)=0\}|=\sum_{i} X_{i}$.
We now calculate the expectations. For each $i, \mathbb{P}\left[X_{i}=1\right]=\frac{1}{2^{m}}$ and $\mathbb{E}\left[X_{i}\right]=\frac{1}{2^{m}}$. Hence,

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i} X_{i}\right]=\frac{|S|}{2^{m}} \tag{4}
\end{equation*}
$$

Also we calculate the variance

$$
\begin{aligned}
\operatorname{Var}\left[X_{i}\right] & =\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2} \\
& \leq \mathbb{E}\left[X_{i}^{2}\right] \\
& =\mathbb{E}\left[X_{i}\right]=\frac{1}{2^{m}}
\end{aligned}
$$

Because X_{1}, \ldots, X_{k} are pairwise independent,

$$
\begin{equation*}
\operatorname{Var}\left[\sum_{i} X_{i}\right]=\sum_{i} \operatorname{Var}\left[X_{i}\right] \leq \frac{|S|}{2^{m}} \tag{5}
\end{equation*}
$$

Using Chebyshev's Inequality, we get

$$
\begin{aligned}
\mathbb{P}\left[\left||\{a \in S: h(a)=0\}|-\frac{|S|}{2^{m}}\right| \geq t\right] & \left.=\mathbb{P}\left[\left|\sum_{i} X_{i}-\mathbb{E}\left[\sum_{i} X_{i}\right]\right| \geq t\right]\right] \\
& \leq \frac{\operatorname{Var}\left[\sum_{i} X_{i}\right]}{t^{2}} \\
& =\frac{|S|}{t^{2} 2^{m}}
\end{aligned}
$$

1.2 The algorithm a-comp

We define the algorithm a-comp as follows.

- input: C, k
- if $k \leq 5$ then check exactly whether $\# C S A T(C) \geq 2^{k}$.
- if $k \geq 6$
- pick h from a set of pairwise independent hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, where $m=k-5$
- answer YES iff there are more then 48 inputs x to C such that $C(x)=1$ and $h(x)=\mathbf{0}$.

Notice that the test at the last step can be done with one access to an oracle to NP and that the overall algorithm runs in probabilistic polynomial time given an NP oracle.

We now analyze the correctness of the algorithm.
Let $S \subseteq\{0,1\}^{n}$ be the set of inputs x such that $C(x)=1$. There are 2 cases.

- If $|S| \geq 2^{k+1}$, let $S^{\prime} \subseteq S$ be an arbitrary subset of S of size exactly 2^{k+1}. Then $|S| / 2^{m}=64$ and we can use Lemma 3 to estimate the error probability as:

$$
\begin{gathered}
\underset{h \sim H}{\mathbb{P}}[|\{x \in S: h(x)=0\}| \leq 48] \\
\leq \underset{h \sim H}{\mathbb{P}}\left[\left|\left\{x \in S^{\prime}: h(x)=0\right\}\right| \leq 48\right] \\
=\underset{h \sim H}{\mathbb{P}}\left[\frac{\left|S^{\prime}\right|}{2^{m}}-|\{x \in S: h(x)=0\}| \geq 16\right] \\
\leq \frac{1}{16^{2}} \cdot \frac{|S|}{2^{m}}=\frac{1}{4}
\end{gathered}
$$

- If $|S|<2^{k}$, then $|S| / 2^{m}<32$, and the probability of error can be estimated as

$$
\begin{aligned}
& \underset{h \sim H}{\mathbb{P}}[|\{x \in S: h(x)=0\}|>48] \\
& \leq \underset{h \sim H}{\mathbb{P}}\left[|\{x \in S: h(x)=0\}|-\frac{|S|}{2^{m}} \geq 16\right] \\
& \leq \frac{1}{16^{2}} \cdot \frac{|S|}{2^{m}} \leq \frac{1}{8}
\end{aligned}
$$

Therefore, the algorithm will give the correct answer with probability at least $3 / 4$, which can then be amplified to, say, $1-1 / 4 n$ (so that all n invocations of a-comp are likely to be correct) by repeating the procedure $O(\log n)$ times and taking the majority answer.

2 Approximate Sampling

So far we have considered the following question: for an NP-relation R, given an input x, what is the size of the set $R_{x}=\{y:(x, y) \in R\}$? A related question is to be able to sample from the uniform distribution over R_{x}.

Whenever the relation R is "downward self reducible" (a technical condition that we won't define formally), it is possible to prove that there is a probabilistic algorithm running in time polynomial in $|x|$ and $1 / \epsilon$ to approximate within $1+\epsilon$ the value $\left|R_{x}\right|$ if and only if
there is a probabilistic algorithm running in time polynomial in $|x|$ and $1 / \epsilon$ that samples a distribution ϵ-close to the uniform distribution over R_{x}.

We show how the above result applies to 3SAT (the general result uses the same proof idea). For a formula ϕ, a variable x and a bit b, let us define by $\phi_{x \leftarrow b}$ the formula obtained by substituting the value b in place of $x .^{1}$

If ϕ is defined over variables x_{1}, \ldots, x_{n}, it is easy to see that

$$
\# \phi=\# \phi_{x \leftarrow 0}+\# \phi_{x \leftarrow 1}
$$

Also, if S is the uniform distribution over satisfying assignments for ϕ, we note that

$$
\underset{\left(x_{1}, \ldots, x_{n}\right) \leftarrow S}{\mathbb{P}}\left[x_{1}=b\right]=\frac{\# \phi_{x \leftarrow b}}{\# \phi}
$$

Suppose then that we have an efficient sampling algorithm that given ϕ and ϵ generates a distribution ϵ-close to uniform over the satisfying assignments of ϕ.

Let us then ran the sampling algorithm with approximation parameter $\epsilon / 2 n$ and use it to sample about $\tilde{O}\left(n^{2} / \epsilon^{2}\right)$ assignments. By computing the fraction of such assignments having $x_{1}=0$ and $x_{1}=1$, we get approximate values p_{0}, p_{1}, such that $\mid p_{b}-\mathbb{P}_{\left(x_{1}, \ldots, x_{n}\right) \leftarrow S}\left[x_{1}=\right.$ $b] \mid \leq \epsilon / n$. Let b be such that $p_{b} \geq 1 / 2$, then $\# \phi_{x \leftarrow b} / p_{b}$ is a good approximation, to within a multiplicative factor $(1+2 \epsilon / n)$ to $\# \phi$, and we can recurse to compute $\# \phi_{x \leftarrow b}$ to within a $(1+2 \epsilon / n)^{n-1}$ factor.

Conversely, suppose we have an approximate counting procedure. Then we can approximately compute $p_{b}=\frac{\# \phi_{x \leftarrow b}}{\# \phi}$, generate a value b for x_{1} with probability approximately p_{b}, and then recurse to generate a random assignment for $\# \phi_{x \leftarrow b}$.

The same equivalence holds, clearly, for 2SAT and, among other problems, for the problem of counting the number of perfect matchings in a bipartite graph. It is known that it is NP-hard to perform approximate counting for 2SAT and this result, with the above reduction, implies that approximate sampling is also hard for 2SAT. The problem of approximately sampling a perfect matching has a probabilistic polynomial solution, and the reduction implies that approximately counting the number of perfect matchings in a graph can also be done in probabilistic polynomial time.

The reduction and the results from last section also imply that 3SAT (and any other NP relation) has an approximate sampling algorithm that runs in probabilistic polynomial time with an NP oracle. With a careful use of the techniques from last week it is indeed possible to get an exact sampling algorithm for 3SAT (and any other NP relation) running in probabilistic polynomial time with an NP oracle. This is essentially best possible, because the approximate sampling requires randomness by its very definition, and generating satisfying assignments for a 3SAT formula requires at least an NP oracle.

[^0]
[^0]: ${ }^{1}$ Specifically, $\phi_{x \leftarrow 1}$ is obtained by removing each occurrence of $\neg x$ from the clauses where it occurs, and removing all the clauses that contain an occurrence of x; the formula $\phi_{x \leftarrow 0}$ is similarly obtained.

