
Contents

Pseudorandomness – Part II 1

Introduction 1

Lecture 1. Deterministic Simulation of Randomized Algorithms 3
1. Probabilistic Algorithms versus Deterministic Algorithms 3
2. De-randomization Under Complexity Assumptions 5

Lecture 2. The Nisan-Wigderson Generator 9
1. Pseudorandom Generators 9
2. The two main theorems 10
3. Error-Correcting Codes and Worst-Case to Average-Case Reductions 11
4. The Nisan-Wigderson Construction 12

Lecture 3. Analysis of the Nisan-Wigderson Generator 17

Lecture 4. Randomness Extractors 21
1. Use of Weak Random Sources 21
2. Extractors 22
3. Applications 22
4. An Extractor from Nisan-Wigderson 23

Bibliography 25

1

IAS/Park City Mathematics Series
Volume 00, 0000

Pseudorandomness – Part II

Luca Trevisan
Scribe: Kumar Saurabh

Introduction

About this Part

This series of lectures shows how pseudorandom generators can be applied to the
task of deterministically (and efficiently) simulating probabilistic algorithms, and
to the task of converting biased distributions into almost uniform distributions.

The applicability of pseudorandom generators to the deterministic simulation
of probabilistic algorithms was already noticed by Yao [Yao82]. Recall that, in
Part I, a pseudorandom generator was defined as a polynomial time procedure
whose output is indistinguishable from uniform by adversaries running in poly-
nomial time (where the degree of the polynomial can be arbitrarily large). As
observed by Nisan and Wigderson [NW94], this definition imposes requirements
that are not necessary in derandomization applications. In fact, it is sufficient to
construct generators that are secure against adversaries running in some specified
polynomial time (of fixed degree) and, more dramatically, it is admissible that the
generator runs in time exponential in its input seed length. This relaxed require-
ments liberated the construction of pseudorandom generators from the framework
of one-way functions, and Nisan and Wigderson [NW94] were able to present a
construction that gave very efficient derandomization under complexity assumption
about the class EXP of decision problems solvable in exponential time. A series of
subsequent works, most notably [BFNW93, Imp95, IW97, IW98] showed how
to use weaker complexity assumptions to achieve the same derandomization results
of [NW94].

The task of converting biased distributions into almost uniform distributions
is performed by procedures called randomness extractors [Zuc96, NZ96]. When
interpreted in the proper way, the pseudorandom generator construction of [NW94]
can also be used to construct efficient randomness extractors. This application has
been discovered only recently [Tre99], and it is the base of most of the best current

1Computer Science Division, U.C. Berkeley.
E-mail address: luca@eecs.berkeley.edu.

c�0000 American Mathematical Society

1

2 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

extractor constructions, such as the ones in [RRV99] and [ISW00] (but not the
one in [RSW00]).

Conventions

In the following lectures we will refer to “algorithms” and to their “running time”
on particular inputs, without explicitly fixing a model of computation. This is
done intentionally, to point out the model-independence of most of the results.
The reader can instantiate “algorithm” and “running time” using any model of his
or her choice that is polynomial-time equivalent to, say, single-tape deterministic
Turing machines.

We will also need, at some point, to use a “non-uniform” measure of complexity.
Here, for concreteness, we will use Boolean circuits with gates having fan-in 2 and
arbitrary fan-out (see, e.g., [Pap94] for a description of this model). We will need
the following facts about such circuits.

• If a circuit has s gates, then it can be described using O(s log s) bits. In
particular, there are 2O(s log s) circuits of size ≤ s.

• Every Boolean function on n inputs can be computed by a circuit of size
O(2n). (In fact, a stronger result is known, but this will be enough for our
purposes.)

Further Reading

A general perspective on pseudorandomness, derandomization, and randomness
extraction is given by Goldreich in [Gol99, Chapter 3].

The original paper by Nisan and Wigderson [NW94] is still one of the best
places to read about their construction; more detailed presentations will be found
in the upcoming journal versions of [Tre99, RRV99].

Two alternative proofs of the major result of [IW97] appear in [STV99], of
which a journal version is also upcoming. The proofs in [STV99] are somewhat
simpler than the original one in [IW97].

A survey paper by Nisan [Nis96] (see also [NTS98]) gives an excellent intro-
duction to the problem of random extraction, to the applications of randomness
extractors, and to some techniques that are used to construct them. Probably
[Tre99] and [RRV99] are the best places to read about the connection between
pseudorandom generation and randomness extraction (Nisan’s survey was written
before the connection was discovered).

An interesting development not covered in these notes is the use of the Nisan-
Wigderson generator to de-randomize bounded-round interactive proofs. This di-
rection has been explored in [AK97, KvM99], with surprising results.

LECTURE 1
Deterministic Simulation of Randomized Algorithms

1. Probabilistic Algorithms versus Deterministic Algorithms

A probabilistic algorithm A(·, ·) is an algorithm that takes two inputs x and r,
where x is an instance of some problem that we want to solve, and r is the output
of a random source. A random source is an idealized device that outputs a sequence
of bits that are uniformly and independently distributed. For example the random
source could be a device that tosses coins, observes the outcome, and outputs it. A
probabilistic algorithm A is good if it is efficient and if, say, for every x,

Pr
r

[A(x, r) = right answer for x] ≥ 3
4

We will typically restrict to the case where A solves a decision problem (e.g. it
tests whether a given number is prime). In this case we say that a language L is
in BPP if there is a polynomial time algorithm A(·, ·) (polynomial in the length of
the first input) such that for every x

Pr
r

[A(x, r) = χL(x)] ≥ 3
4

or, said, another way,

x ∈ L⇒ Pr
r

[A(x, r) = 1] ≥ 3
4

and
x �∈ L⇒ Pr

r
[A(x, r) = 1] ≤ 1

4
.

The choice of the constant 3/4 is clearly quite arbitrary. For any constant 1/2 <
p < 1, if we had defined BPP by requiring the probabilistic algorithm to be correct
with probability st least p, we would have given an equivalent definition. In fact,
for any polynomial p, it would have been equivalent to define BPP by asking the
algorithm to be correct with probability at least 1/2 + 1/p(n), where n is the size
of the input, and it would have also been equivalent if we had asked the algorithm
to be correct with probability at least 1−1/2p(n). That is, for any two polynomials
p and q, if for a decision problem L we have a probabilistic polynomial time A that
solves L on every input of length n with probability at least 1/2 + 1/p(n), then
there is another probabilistic algorithm A�, still running in polynomial time, that
solves L on every input of length n with probability at least 1− 2−q(n).

3

4 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

For quite a few interesting problems, the only known polynomial time algo-
rithms are probabilistic. A well-known example is the problem of testing whether
a given integer is a prime number or not (note that in this case the size of the
input is the number of digits of the integer). Another example is the problem of
extracting “square roots” modulo a prime, i.e. to find solutions, if they exist, to
equations of the form x2 = a (mod p) where p and a are given, and p is prime.
More generally, there are probabilistic polynomial time algorithms to find roots of
polynomials modulo a prime. There is no known deterministic polynomial time
algorithm for any of the above problems.

It is not clear whether the existence of such probabilistic algorithms suggests
that probabilistic algorithms are inherently more powerful than deterministic ones,
or that we have not been able yet to find the best possible deterministic algorithms
for these problems. In general, it is quite an interesting question to determine what
is the relative power of probabilistic and deterministic computations. This question
is the main motivations for the results described in this Part.

1.1. A trivial deterministic simulation

Let A be a probabilistic algorithm that solves a decision problem L. On input x of
length n, say that A uses a random string r of length m = m(n) and runs in time
T = T (n) (note that m ≤ T).

It is easy to come up with a deterministic algorithm that solves L in time
2m(n)T (n). On input x, compute A(x, r) for every r. The correct answer is the one
that comes up the majority of the times, so, in order to solve our problem, we just
have to keep track, during the computation of A(x, r) for every r, of the number of
strings r for which A(x, r) = 1 and the number of strings r for which A(x, r) = 0.

Notice that the running time of the simulation depends exponentially on the
number of random bits used by A, but only polynomially on the running time of A.
In particular, if A uses a logarithmic number of random bits, then the simulation
is polynomial. However, typically, a probabilistic algorithm uses a linear, or more,
number of random bits, and so this trivial simulation is exponential. As we will see
in the next section, it is not easy to obtain more efficient simulations.

1.2. Exponential gaps between randomized and deterministic procedures

For some computational problems (e.g. approximating the size of a convex body)
there are probabilistic algorithms that work even if the object on which they operate
is exponentially big and given as a black box; in some cases one can prove that
deterministic algorithms cannot solve the same problem in the same setting, unless
they use exponential time. Let us see a particularly clean (but more artificial)
example of this situation.

Suppose that there is some function f : {0, 1}n× {0, 1}n → {0, 1} that is given
as an oracle; we want to devise an algorithm that on input x finds an approximation
(say, to within an additive factor 1/10) to the value Pr

y
[f(x, y) = 1]. A probabilistic

algorithm would pick O(1) points y1, . . . , yt at random, evaluate f(x, yi), and then
output the fraction of i such that f(x, yi) = 1. This will be an approximation
to within 1/10 with good probability. However a deterministic subexponential
algorithm, given x, can only look at a negligible fraction of the values f(x, y).
Suppose that f is zero everywhere. Now consider the function g(x, y) that is equal
to f on all the points that our algorithm queries, and is 1 elsewhere (note that, by

LECTURE 1. DETERMINISTIC SIMULATION OF RANDOMIZED ALGORITHMS 5

this definition, the queries of the algorithm on input x will be the same for f and
g). If the algorithm takes sub-exponential time, g is almost everywhere one, yet the
algorithm will give the same answer as when accessing f , which is everywhere zero.
If our algorithm makes less than 2n−1 oracle queries, it cannot solve the problem
with the required accuracy.

2. De-randomization Under Complexity Assumptions

It is still not known how to improve, in the general case, the deterministic simula-
tion of Section 1.1, and the observation of Section 1.2 shows one of the difficulties
in achieving an improvement. If we want to come up with a general way of trans-
forming probabilistic procedures into deterministic sub-exponential procedures, the
transformation cannot be described and analyzed by modeling in a “black box” way
the probabilistic procedure.1 If we want to deterministically and sub-exponentially
simulate BPP algorithms, we have to exploit the fact that a BPP algorithm A(·, ·)
is not an arbitrary function, but an efficiently computable one, and this is difficult
because we still have a very poor understanding of the nature of efficient computa-
tions.

The results described in these notes show that it is indeed possible to determin-
istically simulate probabilistic algorithms in sub-exponential (or even polynomial)
time, provided that certain complexity-theoretic assumptions are true. It is quite
usual in complexity theory that, using reductions, one can show that the answer
to some open question is implied by (or even equivalent to) the answer to some
other question, however the nature of the results of these notes is somewhat un-
usual. Typically a reduction from a computational problem A to a problem B
shows that if B has an efficient algorithm then A has also an efficient algorithm,
and, by counterpositive, if A is intractable then B is also intractable. In general,
using reductions one shows that algorithmic assumptions imply algorithmic conse-
quences, and intractability assumptions imply intractability consequences. In these
notes we will see instead that the existence of efficient derandomized algorithms is
implied by the intractability of some other problem, so that a hardness condition
implies an algorithm consequence.

In the next section we will introduce some notation about computational prob-
lems and complexity measures, and then we will state some results about conditional
de-randomization.

2.1. Formal Definitions of Complexity Measures and Complexity Classes

For a decision problem L and an integer n we denote by Ln the restriction of L
to inputs of length n. It will be convenient to think of Ln as a Boolean function
Ln : {0, 1}n → {0, 1} (with the convention that x ∈ Ln if and only if Ln(x) = 1).

For a function f : {0, 1}n → {0, 1}, consider the size of the smallest circuit
that solves f ; denote this number by CC(f). By definition, we have that if C is a

1More precisely, it is impossible to have a sub-exponential time deterministic “universal deran-
domization procedure” that given x and oracle access to an arbitrary function A(·, ·) outputs 1
when Pr

r
[A(x, r) = 1] ≥ 3/4 and outputs 0 when Pr

r
[A(x, r) = 1] ≤ 1/4. In fact, more generally, it

is impossible to give sub-exponential time algorithms for all BPP problems by using “relativizing”
techniques. It is beyond the scope of these notes to explain what this means, and why it is more
general. “Relativizations” are discussed in [Pap94], where it is possible to find pointers to the
relevant literature.

6 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

circuit with n inputs of size less than CC(f) then there exists an x ∈ {0, 1}n such
that C(x) �= f(x).

Consider now, for every n, what is the minimum s such that there is a circuit
C of size s such that Pr

x∈{0,1}n

[C(x) = f(x)] ≥ 1/2 + 1/s; denote this number by

H(f).
Recall that DTIME(T (n)) is the class of decision problems that can be solved

by deterministic algorithms running in time at most T (n) on inputs of length n.
We have the classes E = DTIME(2O(n)) and EXP = DTIME(2n

O(1)
).

2.2. Hardness versus Randomness

From our previous arguments, we have BPP ⊆ EXP. Since there are settings
where probabilistic procedures require exponential time to be simulated, one would
conjecture that BPP �⊆ 2n

o(1)
; on the other hand, BPP seems to still represent a class

of feasible computations, and it would be very surprising if BPP = EXP. As we will
see in a moment, something is wrong with the above intuition. Either BPP = EXP,
which sounds really impossible, or else it must be the case that BPP has sub-
exponential time deterministic algorithms (that will work well only on average, but
that would be quite remarkable enough).

Theorem 1 ([IW98]). Suppose BPP �= EXP; then for every BPP language L and

every ε > 0 there is a deterministic algorithm A that works in time 2n
ε

and, for

infinitely many n, solves L on a fraction 1− 1/n of the inputs of length n.

This gives a non-trivial simulation of BPP under an uncontroversial assumption.
We can also get an optimal simulation of BPP under an assumption that is much
stronger, but quite believable.

Theorem 2 ([IW97]). Suppose there is a problem L in E and a fixed δ > 0 such

that, for all sufficiently large n, CC(Ln) ≥ 2δn; then P = BPP.

We will call the statement “there is a problem L in E and a fixed δ > 0 such
that, for all sufficiently large n, CC(Ln) ≥ 2δn” the “IW assumption.” Note that
if the IW assumption is true, then it is true in the case where

L = {(M,x, 1k) : machine M halts within 2k steps on input x }
Notice also that L cannot be solved by algorithms running in time 2o(n), and so it
would be a little bit surprising if it could be solvable by circuits of size 2o(n), because
it would mean that, for general exponential time computations, non-uniformity buys
more than a polynomial speed-up. In fact it would be very surprising if circuits of
size 2.99n existed for L.

The two theorems that we just stated are the extremes of a continuum of results
showing that by making assumptions on the hardness of problems in E and EXP it
is possible to devise efficient deterministic algorithms for all BPP problems. The
stronger the assumption, the more efficient the simulation.

Notice that the assumption in Theorem 2 is stronger than the assumption
in Theorem 1 in two ways, and that, similarly, the conclusion of Theorem 2 is
stronger than the conclusion in Theorem 1 in two ways. On the one hand, the
assumption in Theorem 2 refers to circuit size, that is, to a non-uniform measure
of complexity, whereas the assumption in Theorem 1 uses a uniform measure of
complexity (running time of probabilistic algorithms). This difference accounts for

LECTURE 1. DETERMINISTIC SIMULATION OF RANDOMIZED ALGORITHMS 7

the fact that the conclusion of Theorem 2 gives an algorithm that works for all
inputs, while the conclusion of Theorem 1 gives an algorithm that works only for
most inputs. The other difference is that Theorem 2 assumes exponential hardness,
while Theorem 2 assumes only super-polynomial hardness. This is reflected in the
running time of the consequent deterministic simulations (respectively, polynomial
and sub-exponential).

When one makes the non-uniform assumption that there is a problem in E that
requires circuits of size s(n), then the consequence is a deterministic simulation of
BPP in time roughly 2s

−1(nO(1)) [ISW99]. So if one assumes that E requires super-
polynomial circuits, BPP can be simulated in time 2n

o(1)
, if one assumes that E

requires circuits of size 2Ω(n) then the simulation runs in time nO(1), if one assumes
that E requires circuits of size nlog n then the simulation runs in time 22O(

√
log n)

, and
so on. The result of [IW98] does not scale up so well when one is willing to make
stronger uniform assumptions. In particular, the following is an open question.

Conjecture 3. Suppose E �⊆
�

δ>0 BPTIME(2δn); then for every BPP language

L there is a deterministic polynomial time algorithm A that, for infinitely many n,

solves L on a fraction 1− 1/n of the inputs of length n.

LECTURE 2
The Nisan-Wigderson Generator

In this lecture we will review the notion of a pseudorandom generator, and
we will see that in order to prove Theorem 2 it is enough to prove that the IW
assumption implies the existence of pseudorandom generators with certain param-
eters. We will then state two results that, combined, give such an implication. One
of these results is the Nisan-Wigderson pseudorandom generator construction. We
will start developing some intuition about this construction, and we will analyze it
in the next lecture.

1. Pseudorandom Generators

We say that a function G : {0, 1}t → {0, 1}m is a (s, ε)-pseudorandom generator if
for every circuit D of size ≤ s we have

|Pr
r

[D(r) = 1]−Pr
z

[D(G(z)) = 1]| ≤ ε

Suppose that we have a probabilistic algorithm A such that for inputs x of
length n the computation A(x, ·) can be performed by a circuit of size s(n); suppose
that for every x we have Pr

r
[A(x, r) = right answer] ≥ 3/4, and suppose that we

have a (s, 1/8) pseudorandom generator G : {0, 1}t(n) → {0, 1}m(n). Then we can
define a new probabilistic algorithm A� such that A�(x, z) = A(x,G(z)). It is easy
to observe that for every x we have

Pr
z

[A�(x, z) = right answer] ≥ 5/8

and that, using the trivial derandomization we can get a deterministic algorithm
A�� that always works correctly and whose running time is 2t times the sum of the
running time of A plus the running time of G.

If t is logarithmic in m and s, and if G is computable in poly(m, s) time, then
the whole simulation runs in deterministic polynomial time. Notice also that if
we have a (s, ε)-pseudorandom generator G : {0, 1}t → {0, 1}m, then for every
m� ≤ m we also have, for a stronger reason, a (s, ε) pseudorandom generator
G� : {0, 1}t → {0, 1}m

�
(G� just computes G and omits the last m−m� bits of the

output). So there will be no loss in generality if we consider only generators for the
special case where, say, s = 2m. (This is not really necessary, but it will help reduce

9

10 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

the number of parameters in the statements of theorems.) We have the following
easy theorem.

Theorem 4. Suppose there is a family of generators Gm : {0, 1}O(log m) → {0, 1}m

that are computable in poly(m) time and that are (2m, 1/8)-pseudorandom; then

P = BPP.

Of course this is only a sufficient condition. There could be other approaches
to proving (conditionally) P = BPP, without passing through the construction of
such strong generators. Unfortunately we hardly know of any other approach, and
anyway the (arguably) most interesting results are proved using pseudorandom
generators.1

2. The two main theorems

2.1. The Nisan-Wigderson Theorem

Theorem 5 (Special case of [NW94]). Suppose there is L ∈ E and δ > 0 such

that, for all sufficiently large n, H(Ln) ≥ 2δn; then there is a family of generators

Gm : {0, 1}O(log m) → {0, 1}m that are computable in poly(m) time and that are

(2m, 1/8)-pseudorandom (in particular, P = BPP).

Notice the strength of the assumption. For almost every input length n, our
problem has to be so hard that even circuits of size 2δn have to be unable to solve
the problem correctly on more than a fraction 1/2 + 2−δn of the inputs. A circuit
of size 1 can certainly solve the problem on a fraction at least 1/2 of the inputs
(either by always outputting 0 or by always outputting 1). Furthermore, a circuit
of size 2n always exist that solves the problem on every input. A circuit of size
2δn can contain, for example, the right solution to our problem for every input
whose first (1 − δ)n bits are 0; the circuit can give the right answer on these 2δn

inputs, and answer always 0 or always 1 (whichever is better) on the other inputs.
This way the circuit is good on about a fraction 1/2 + 2−(1−δ)n of the inputs.
So, in particular, for every problem, there is a circuit of size 2n/2 that solves the
problem on a fraction 1/2 + 2−n/2 of the inputs. It is somewhat more tricky to
show that there is in fact even a circuit of size 2(1/3+o(1))n that solves the problem
on a fraction 1/2 + 2−(1/3+o(1))n of the inputs, and this is about best possible for
general problems [ACR97].

2.2. Worst-case to Average-case Reduction

Theorem 6 ([BFNW93, Imp95, IW97]). Suppose there is L ∈ E and δ > 0
such that, for all sufficiently large n, CC(Ln) ≥ 2δn; Then there is L� ∈ E and

δ� > 0 such that, for all sufficiently large n, H(L�n) ≥ 2δ
�
n.

1Some exceptions are discussed below. Andreev et al. [ACR98] show that in order to deter-
ministically simulate probabilistic algorithms it is enough to construct hitting set generators, a
seemingly weaker primitive than a pseudorandom generator. The complicated proof of [ACR98]
was simplified in subsequent work [ACRT99, BF99, GW99]. Andreev et al. [ACR99] also
show how to construct hitting set generators, but only under very strong complexity assumptions.
Miltersen and Vinodchandran [MV99] give a very elegant construction of hitting set generators,
but it also requires a stronger hardness assumption than in [IW97]. On the other hand, [MV99]
also gets a stronger conclusion, and, in particular, it is not known how to prove the main result
of [MV99] (about the “derandomization” of two-rounds interactive proofs) using pseudorandom
generators.

LECTURE 2. THE NISAN-WIGDERSON GENERATOR 11

This is quite encouraging: the (believable) IW assumption implies the (a priori
less believable) NW assumption. Notice how Theorem 2 follows from Theorems 5
and 6.

3. Error-Correcting Codes and Worst-Case to Average-Case Re-

ductions

The purpose of this section is to give an overview of the proof of Theorem 6. The
proof will not be the one of [BFNW93, Imp95, IW97], but rather the one of
[STV99], and it will rely on the notion of an error-correcting code.

For two strings x, y ∈ {0, 1}n, their Hamming distance is the number of places
where they differ, i.e., the number of indices i such that xi �= yj . In the following we
will consider the normalized Hamming distance (that we will just abbreviate with
“distance”), defined as d(x, y) = Pr

i∈{1,...,n}
[xi �= yi], that is, the Hamming distance

divided by n.
Consider a mapping C : {0, 1}n → {0, 1}n̄; such a mapping is called an error-

correcting code with minimum distance γ if for any distinct x, x� ∈ {0, 1}n we
have d(C(x), C(x�)) ≥ γ. The term “error-correcting” comes from the following
observation: suppose that we transmit C(x) over a noisy channel, and that what is
received at the other end of the channel is a string y such that d(C(x), y) < γ/2;
then, at least in principle, it is still possible to reconstruct x from y, since, by
triangle inequality, x will be the only possible string such that d(C(x), y) < γ/2.

Interestingly, for any γ < 1/2 there are polynomial-time computable codes with
minimum distance γ, such that the decoding problem is also solvable in polynomial
time (in fact there are codes that are both encodable and decodable in linear time).
Perhaps even more surprisingly, if we are interested in decoding only a small part
of the message (in the extreme, only one bit), then there are codes with sub-linear

probabilistic decoding procedures.

Theorem 7. For any fixed γ < 1/4 and for any sufficiently large n there is a code

C : {0, 1}n → {0, 1}n̄ computable in poly(n) time (in particular, n̄ = poly(n)) and

a poly log n time probabilistic algorithm A, such that for every x ∈ {0, 1}n, for any

y ∈ {0, 1}n̄ such that d(C(x), y) ≤ γ, for any i ∈ {1, . . . , n}, we have

Pr[A(i, y) = xi] ≥ 1− 1/4n

where the probability is taken over the internal random choices of the algorithm.

We leave as an exercise to prove the following consequence.

Theorem 8. Suppose there is a problem L in E and a fixed δ > 0 such that, for all

sufficiently large n, CC(Ln) ≥ 2δn; Then there is a problem L� in E and a δ� > 0
such that for all circuits C of size ≤ 2δ

�
n we have

Pr[C(x) = Ln(x)] ≤ .76

Unfortunately the theorem cannot be extended to the case γ > 1/4. In order for
the decoding problem to even be well-defined, we would need codes with minimum
distance > 2γ > 1/2, but such codes do not exist (except for finitely many n).
Suppose, for example, that we would like to deal with a channel that only guarantees
that the received string is at distance at most 1/3 from the transmitted codeword.
Suppose that we are using a code of minimum distance .49. When we receive a
string y, we know for sure that the only possibly decodings come from the set

12 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

{x : d(C(x), y) < 1/3}. We cannot argue anymore that the set contains only
one element, however it would be useful to argue that it contains few elements.
(Algorithmically, it would be nice to be able to reconstruct such a set efficiently
given y.) The following theorem states that if the code has high minimum distance,
then there is an upper bound on the number of codewords in such sets.

Theorem 9. Let C : {0, 1}n → {0, 1}n̄ be a code of minimum distance 1/2 − δ2.

Then for every y ∈ {0, 1}n̄, there are at most 1/δ2 elements x ∈ {0, 1}n such that

d(C(x), y) ≤ 1/2− δ.

So if we transmit C(x) and we receive a string y that agrees with y on only a
fraction 1/2 + δ of the places, it is possible (at least in principle) to create a list of
only 1/δ2 possible decodings for y, and one of them is guaranteed to be x. Such a
computational task is called “list-decoding.” There are error-correcting codes with
polynomial time encoding algorithms and polynomial time list decoding algorithms.

It is also possible to come up with codes having sublinear time list decoding
algorithms, but even the statement of such a result is somewhat complicated. From
the existence of such codes one can derive 6.

4. The Nisan-Wigderson Construction

The Nisan-Wigderson generator is based on the existence of a decision problem L
in E such that for almost every input length l we have H(Ll) ≥ 2δl, yet there is a
uniform algorithm that solves Ll in 2O(l) time. Our goal is to use these assumptions
on Ll to build a generator whose input seed is of length O(l), whose output is of
length 2Θ(l) and indistinguishable from uniform by adversaries of size 2Θ(l), and
the generator should be computable in time 2O(l).

As we will see in a moment, it is not too hard to construct a generator that
maps l bits into l + 1 bits, and whose running time and pseudorandomness are as
required. Recall that in Part 1 we saw how to turn a pseudorandom generator that
stretches its input by one bit into a pseudorandom generator with a much longer
output. Unfortunately, the same approach will not work in our case.2 We will
then present the Nisan-Wigderson construction, and defer its analysis to the next
lecture.

4.1. Impredictability versus Pseudorandomness

Let f : {0, 1}l → {0, 1} be a function such that H(f) ≥ s, and consider the
pseudorandom generator G : {0, 1}l → {0, 1}l+1 defined as G(x) = x · f(x), where
‘·’ is used to denote concatenation. We want to argue that G is a (s − 3, 1/s)-
pseudorandom generator.

The argument works by contradiction, and consists in the proof of the following
result.

Lemma 10. Let f : {0, 1}l → {0, 1}. Suppose that there is a circuit D of size s
such that

|Pr
x

[D(x · f(x)) = 1]−Pr
x,b

[D(x · b) = 1]| > ε

2The main difference with respect to the setting of Part 1 is that we allow the running time of the
generator to be larger than the circuit size of the adversary. We will elaborate on the difference
in Section 4.2.

LECTURE 2. THE NISAN-WIGDERSON GENERATOR 13

then there is a circuit A of size s + 3 such that

Pr
x

[A(x) = f(x)] >
1
2

+ ε

Proof. First of all, we observe that there is a circuit D� of size at most s + 1 such
that

(1) Pr
z

[D�(x · f(x)) = 1]−Pr
x,b

[D�(x · b) = 1] > ε

This is because Expression (1) is satisfied either by taking D = D� or by taking
D = ¬D�. A way to interpret Expression (1) is to observe that when the first l bits
of the input of D�() are a random string x, D� is more likely to accept if the last
bit is f(x) than if the last bit is random (and, for a stronger reason, if the last bit
is 1− f(x)). This observation suggests the following strategy in order to use D� to
predict f : given an input x, for which we want to compute f(x), we guess a value
b, and we compute D�(x, b). If D�(x, b) = 1, we take it as evidence that b was a
good guess for f(x), and we output b. If D�(x, b) = 0, we take it as evidence that
b was the wrong guess, and we output 1− b. Let Ab be the procedure that we just
described. We claim that

(2) Pr
x,b

[Ab(x) = f(x)] >
1
2

+ ε

The claim is proved by the following derivation

Pr
x,b

[Ab(x) = f(x)]

= Pr
x,b

[Ab(x) = f(x)|b = f(x)]Pr
x,b

[b = f(x)]

+Pr
x,b

[Ab(x) = f(x)|b �= f(x)]Pr
x,b

[b �= f(x)]

=
1
2

Pr
x,b

[Ab(x) = f(x)|b = f(x)] +
1
2

Pr
x,b

[Ab(x) = f(x)|b �= f(x)]

=
1
2

Pr
x,b

[D�(x, b) = 1|b = f(x)] +
1
2

Pr
x,b

[D�(x, b) = 0|b �= f(x)]

=
1
2

+
1
2

Pr
x,b

[D�(x, b) = 1|b = f(x)]− 1
2

Pr
x,b

[D�(x, b) = 1|b �= f(x)]

=
1
2

+ Pr
x,b

[D�(x, b) = 1|b = f(x)]

−1
2

�
Pr
x,b

[D�(x, b) = 1|b = f(x)] + Pr
x,b

[D�(x, b) = 1|b �= f(x)]
�

=
1
2

+ Pr
x

[D�(x, f(x)) = 1]−Pr
x,b

[D�(x, b) = 1]

>
1
2

+ ε

From Expression (2) we can observe that there must be a b0 ∈ {0, 1} such that

Pr
x

[Ab0(x) = f(x)] >
1
2

+ ε

And Ab0 is computed by a circuit of size at most s + 3 because Ab0(x) = b0 ⊕
(¬D�(x, b0)), which can be implemented with two more gates given a circuit for
D�.

14 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

4.2. The Difference with the Blum-Micali-Yao Setting

We just saw how to construct a pseudorandom generator that maps l bits into l+1
bits, given a function f : {0, 1}l → {0, 1} of high hardness. The construction is
reminiscent of the construction of a similar generator given a one-way permutation
and a hard predicate. In fact, if f is hard, it can be seen as the “hard-core predicate”
of the identity function, and, from this perspective, the construction of the previous
section is the same as the construction seen in Part 1. Of course the identity
function is not a one-way permutation, and a function f of high hardness is not
necessarily a hard-core predicate. The difference is that a hard-core predicate B for
a permutation π is such that B(x) is hard to compute given π(x), but it is easy to
compute given x. In our current scenario, f is just hard. This difference is reflected
in the efficiency of the generator construction. In the case of one-way permutations
and hard predicates, it is possible to have a (s, ε) generator that is computable in
time significantly smaller than s. In our case, the running time of the generator
has to be bigger than s.

This difference is very important. In Part 1 we saw how to get a pseudorandom
generator with large output length given a pseudorandom generator whose output
is only one bit longer than the input. The same construction fails in our setting.

In fact, starting from a generator that maps x in x · f(x), the “bootstrap”
construction of Part 1 would create a generator that maps x in f(x) ·f(x) ·f(x) · · · ,
that is certainly distinguishable from uniform.

The Nisan-Wigderson construction and its analysis are therefore quite different
from what we have seen in Part 1, however, at a higher level of abstraction, there are
similarities. Starting from a permutation π and a hard-core predicate B, the gener-
ator described in Part 1, on input x, would output B(x) ·B(π(x)) ·B(π(π(x))) · · · ,
that is, it would evaluate the hard predicate on points obtained by repeatedly ap-
plying π to x. In the Nisan-Wigderson generator, the output is also the evaluation
of the hard function f on points generated using the input seed. The difference is
in the generation of the points. In the Nisan-Wigderson generator, the process by
which the seed is converted into a series of evaluation points for f uses ‘combina-
torial designs,” that we describe next.

4.3. Combinatorial Designs

Consider a family (S1, . . . , Sm) of subsets of an universe U . We say the family is a
(l,α)-design if, for every i, |Si| = l, and, for every i �= j, |Si ∩ Sj | ≤ α.

Theorem 11. For every integer l, fraction γ > 0, there is an (l, log m) design

(S1, . . . , Sm) over the universe [t], where t = O(l/γ) and m = 2γl; such a design

can be constructed in O(2ttm2) time.

We will use the following notation: if z is a string in {0, 1}t and S ⊂ [t], then we
denote by z|S the string of length |S| obtained from z by selecting the bits indexed
by S. For example if z = (0, 0, 1, 0, 1, 0) and S = {1, 2, 3, 5} then z|S = (0, 0, 1, 1).

4.4. The Nisan-Wigderson Generator

For a Boolean function f : {0, 1}l → {0, 1}, and a design S = (S1, . . . , Sm) over [t],
the Nisan-Wigderson generator is a function NWf,S : {0, 1}t → {0, 1}m defined as
follows:

LECTURE 2. THE NISAN-WIGDERSON GENERATOR 15

NWf,S(z) = f(z|S1) · f(z|S2) · · · f(z|Sm
)

LECTURE 3
Analysis of the Nisan-Wigderson Generator

This lecture is devoted to the proof of the following result.

Lemma 12. Let f : {0, 1}l → {0, 1} be a Boolean function and S = (S1, . . . , Sm)
be a (l, log m) design over [t]. Suppose D : {0, 1}m → {0, 1} is such that

|Pr
r

[D(r) = 1]−Pr
z

[D(NWf,S(z)) = 1]| > ε .

Then there exists a circuit C of size O(m2) such that

|Pr
x

[D(C(x)) = f(x)]− 1/2| ≥ ε

m

Proof. The main idea is that if D distinguishes NWf,S(·) from the uniform distri-
bution, then we can find a bit of the output of the generator where this distinction
is noticeable. On such a bit, D is distinguishing f(x) from a random bit, and such
a distinguisher can be turned into a predictor for f . In order to find the “right bit”,
we will use the hybrid argument. At this level of abstraction, the analysis is the
same as the analysis of the Blum-Micali-Yao generator, however, as the analysis
unfolds, we will see major differences.

Let us start with the hybrid argument. We define m+1 distributions H0, . . . ,Hm;
Hi is defined as follows: sample a string v = NWf,S(z) for a random z, and then
sample a string r ∈ {0, 1}m according to the uniform distribution, then concatenate
the first i bits of v with the last m − i bits of r. By definition, Hm is distributed
as NWf,S(y) and H0 is the uniform distribution over {0, 1}m.

Using the hypothesis of the Lemma, we know that there is a bit b0 ∈ {0, 1}
such that

Pr
y

[D�(NWf,S(y)) = 1]−Pr
r

[D�(r)] > ε

where D�(x) = b0 ⊕D(x).
We then observe that

ε ≤ Pr
z

[D�(NWf,S(z)) = 1]−Pr
r

[D�(r)]

= Pr[D�(Hm) = 1]−Pr[D�(H0) = 1]

=
m�

i=1

(Pr[D�(Hi) = 1]−Pr[D�(Hi−1) = 1])

17

18 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

In particular, there exists an index i such that

(3) Pr[D�(Hi) = 1]−Pr[D�(Hi−1) = 1] ≥ ε/m

Now, recall that

Hi−1 = f(z|S1) · · · f(z|Si−1)riri+1 · rm

and

Hi = f(z|S1) · · · f(y|Si−1)f(y|Si
)ri+1 · rm .

We can assume without loss of generality (up to a renaming of the indices) that
Si = {1, . . . , l}. Then we can see z ∈ {0, 1}t as a pair (x, y) where x = z|Si

∈
{0, 1}l and y = z|[t]−Si

∈ {0, 1}t−l. For every j < i and z = (x, y), let us define
fj(x, y) = f(z|Sj

): note that fj(x, y) depends on |Si ∩ Sj | ≤ log m bits of x and on
l − |Si ∩ Sj | ≥ l − log m bits of y. With this notation we have

Pr
x,y,ri+1,...,rm

[D�(f1(x, y), . . . , fi−1(x, y), f(x), . . . , rm) = 1]

− Pr
x,y,ri+1,...,rm

D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1] > ε/m

That is, when D� is given a string that contains fj(x, y) for j < i in the first i− 1
entries, and random bits in the last m− i entries, then D� is more likely to accept
the string if it contains f(x) in the i-th entry than if it contains a random bit in
the i-th entry. This is good enough to (almost) get a predictor for f . Consider the
following algorithm:
Algorithm A
Input: x ∈ {0, 1}l

Pick random ri, . . . , rm ∈ {0, 1}
Pick random y ∈ {0, 1}t−l

Compute f1(x, y), . . . , fi−1(x, y)
If D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1 output ri

Else output 1− ri

Let us forget for a moment about the fact that the step of computing f1(x, y), . . . , fi−1(x, y)
looks very hard, and let us check that A is good predictor. Let us denote by

LECTURE 3. ANALYSIS OF THE NISAN-WIGDERSON GENERATOR 19

A(x, y, r1, . . . , rm) the output of A on input x and random choices y, r1, . . . , rm.

Pr
x,y,r

[A(x, y, r) = f(x)]

= Pr
x,y,r

[A(x, y, r) = f(x)|ri = f(x)] Pr
x,ri

[ri = f(x)]

+ Pr
x,y,r

[A(x, y, r) = f(x)|ri �= f(x)] Pr
x,ri

[ri �= f(x)]

=
1
2

Pr
x,y,r

[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = ri]

+
1
2

Pr
x,y,r

[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 0|f(x) �= ri]

=
1
2

+
1
2

�
Pr

x,y,r
[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

− Pr
x,y,r

[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) �= b]
�

=
1
2

+ Pr
x,y,r

[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

−1
2

�
Pr

x,y,r
[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) = b]

+ Pr
x,y,r

[D�(f1(x, y), . . . , fi−1(x, y), ri, . . . , rm) = 1|f(x) �= b]
�

=
1
2

+ Pr[D�(Hi) = 1]−Pr[D�(Hi−1) = 1]

≥ 1
2

+
ε

m
So A is good, and it is worthwhile to see whether we can get an efficient implemen-
tation. We said we have

Pr
x,y,ri,...,rm

[A(x, y, r) = f(x)] ≥ 1
2

+
ε

m

so there surely exist fixed values ci, . . . , cm to give to ri, . . . , rm, and a fixed value
w to give to y such that

Pr
x,r

[A(x, w, ci, ci+1, . . . , cm) = f(x)] ≥ 1
2

+
ε

m

At this point we are essentially done. Since w is fixed, now, in order to implement
A, we only have to compute fj(x,w) given x. However, for each j, fj(x,w) is a
function that depends only on ≤ log m bits of x, and so is computable by a circuits
of size O(m). Even composing i−1 < m such circuit, we still have that the sequence
f1(x, w), . . . , fi−1(x,w), ci, ci+1, . . . , cm can be computed, given x, by a circuit C of
size O(m2). Finally, we notice that at this point A(x,w, c) is doing the following:
output the xor between ci and the complement of D�(C(x)). Since ci is fixed, either
A(x, w, c) always equals D(C(x)), or one is the complement of the other. In either
case the Lemma follows.

At this point it should not be too hard to derive Theorem 5.

LECTURE 4
Randomness Extractors

See [Nis96, Gol99] to find references and proper credits about the material in
this section.

1. Use of Weak Random Sources

Suppose that we have a probabilistic algorithm A(·, ·) that on inputs of length
n runs in time T (n) and uses m(n) random bits. Instead of a perfect source of
randomness, we assume that we have a source that produces an output containing
some “impredictability,” but that can still be very far from uniform. A very general
way of modeling this source is to assume that on input 1N it outputs a string in
{0, 1}N , and that the output string has “some randomness” (a notion that we will
formalize and quantify in a moment). Typically, a good way to quantify the amount
of randomness, or impredictability, in a distribution, is to compute its (Shannon)
entropy. For a random variable X whose range is {0, 1}N , its entropy is defined as
H(X) =

�
a∈{0,1}N Pr[X = a] log(1/Pr[X = a]),

Shannon entropy is a very good measure in cases where one is allowed to take
multiple samples from the distribution, but in our setting this is not the best
measure. Consider for example a distribution X such that X = (0, 0, · · · , 0) with
probability 1−1/

√
N , and it is uniform with probability 1/

√
N . Then its Shannon

entropy is about
√

N , which is quite high, yet it is almost always a useless string
of zeroes. It is a good intuition to think that the amount of randomness contained
in the outcome a of a random variable X is log 1/Pr[X = a]. If X has Shannon
entropy k, then on average, when we sample from X we get a value of “randomness”
k, however it can be the case that with very high probability we get almost zero
randomness, and with low probability we get high randomness. We would rather
have a measure of randomness that guarantees to have almost always, or, even
better, always, high randomness. This motivates the definition of min-entropy: a
random variable X has min-entropy at least k if for every a in the range of X we
have Pr[X = a] ≤ 1/2k. That is, the min-entropy of X is mina{log 1/Pr[X = a]}.

Definition 13. A random variable with range {0, 1}N having min-entropy at least

k will be called a (N, k)-source.

Given one access to a (N, k) source, we would like to be able to simulate any
probabilistic algorithm that uses m random bits, where m is close to k. If the

21

22 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

simulation is “black box” and takes time T , one can argue that m ≤ k + O(log T).
We will not define formally what a black-box simulation is, but we will develop
simulations that are black box, so it will come as no surprise that our simulations
will work only for m smaller than k, in fact only for m smaller than k1/3. (This is
partly due to oversimplifications in the analysis; one could get k.99 with almost the
same proof.)

2. Extractors

An extractor is a function that transforms a (N, k) source into an almost uniform
distribution. The transformation is done by using a (typically very small) number
of additional random bits.

Formally, we have the following definition.

Definition 14. For two random variables X and Y with range {0, 1}m, their vari-

ational distance is defined as ||X − Y || = maxS⊆{0,1}m{|Pr[X ∈ S]−Pr[Y ∈ S]|}.
We say that two random variables are ε-close if their variational distance is at most

ε.

Definition 15. A function Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, ε) extractor

if for any (N, k) source X we have that Ext(X, Ul) is ε-close to uniform, where Ul

is the uniform distribution over {0, 1}l.

Equivalently, if Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, ε) extractor, then
for every distribution X ranging over {0, 1}N of min-entropy k, and for every S ⊆
{0, 1}m, we have

| Pr
a∈X,z∈{0,1}t

[Ext(a, z) ∈ S]− Pr
r∈{0,1}m

[r ∈ S]| ≤ ε

3. Applications

See [Nis96] for an extensive survey. Here we present only one application. Another
notable application is the construction of expanders.

Suppose that A(·, ·) is a probabilistic algorithm that on an input of length
n uses m(n) random bits, and suppose that for every x we have Pr

r
[A(x, r) =

right answer] ≥ 3/4. Suppose Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, 1/4)-
extractor.

Consider the following algorithm A�: on input x ∈ {0, 1}n and weakly random
a ∈ {0, 1}N , A� computes A(x,Ext(a, z)) for every z ∈ {0, 1}t, and then it outputs
the answer that appears the majority of such 2t times. We want to argue that
A� is correct with high probability if a is sampled from a weak random source of
entropy slightly higher than k. Let us fix the input x. Consider the set B of strings
a ∈ {0, 1}N for which the algorithm A� makes a mistake:

B = {a : Pr
z∈{0,1}t

[A(x,Ext(a, z)) = right answer] < 1/2}

Consider the random variable X that is uniformly distributed over B (clearly, X
has min-entropy log B). Then we have

Pr
a∈X,z∈{0,1}t

[A(x,Ext(a, z)) = right answer] < 1/2

LECTURE 4. RANDOMNESS EXTRACTORS 23

and so

| Pr
a∈X,z∈{0,1}t

[A(x,Ext(a, z)) = right answer]−Pr
r

[A(x, r) = right answer]| > 1/4

and then it follows form the property of Ext that X must have min-entropy less
than k, that is |B| ≤ 2k.

Let now X be a (N, k + 2)-source, and let us execute algorithm A� using X.
Then

Pr
a∈X,z∈{0,1}t

[A(x,Ext(a, z)) = right answer] = 1− Pr
a∈X

[a ∈ B] ≥ 3/4

More generally

Theorem 16. Suppose A is a probabilistic algorithm running in time TA(n) and

using m(n) random bits on inputs of length n. Suppose we have for every m(n)
a construction of a (k(n), 1/4)-extractor Extn : {0, 1}N × {0, 1}t(n) → {0, 1}m(n)

running in TE(n) time. Then A can be simulated in time 2t(TA + TE) using one

sample from a (N, k + 2) source.

4. An Extractor from Nisan-Wigderson

This is a simplified presentation of results in [Tre99] (see also [RRV99, ISW00]).
Let C : {0, 1}N → {0, 1}N̄ be a polynomial time computable error-correcting

code such that any ball of radius at most 1/2− δ contains at most 1/δ2 codewords.
Such a code exists with n̄ = poly(n, 1/δ).

For a string x ∈ {0, 1}N̄ , let < x >: {0, 1}log N̄ → {0, 1} be the function whose
truth table is x. Let l = log N̄ , and let S = (S1, . . . , Sm) be a (l, log m) design over
[t]. Then consider the procedure ExtNW : {0, 1}N × {0, 1}t → {0, 1}m defined as

ExtNWC,S(x, z) = NW<C(x)>,S(z) .

That is, ExtNW first encodes its first input using an error-correcting code, then
views it as a function, and finally applies the Nisan-Wigderson construction to such
a function, using the second input as a seed.

Lemma 17. For sufficiently large m and for ε > 2−m
2
, ExtNWC,S is a (m3, 2ε)-

extractor.

Proof. Fix a random variable X of min-entropy m3 and a function D : {0, 1}m →
{0, 1}; we will argue that

|Pr[D(r) = 1]− Pr
a∈X,z∈{0,1}t

[D(ExtNW (a, z)) = 1]| ≤ 2ε

Let us call a value a bad if it happens that

|Pr[D(r) = 1]− Pr
z∈{0,1}t

[D(ExtNW (a, z)) = 1]| > ε

and let us call B the set of bad a. When a is bad, it follows that there is a circuit C
of size O(m2) such that either D(C()) or its complement agrees with a on a fraction
1/2 + ε/m of its entries. Therefore, a is totally specified by D, C, and 2 log(m/ε)
additional bits (once we have D and C, we know that the encoding of a sits in a
given sphere of radius 1/2− ε/m, together with at most other (m/ε)2 codewords).
Therefore, for a fixed D, the size of B is upper bounded by the number of circuits
of size O(m2), that is 2O(m2 log m), times (m/ε)2, times 2. The total is 2O(m2 log m).

24 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

The probability that an element a taken from X belongs to B is therefore at most
2−m

3 · 2O(m2 log m) < ε for sufficiently large m. We then have

|Pr[D(r) = 1]− Pr
a∈X,z∈{0,1}t

[D(ExtNW (a, z)) = 1]|

≤
�

a

Pr[X = a]
����Pr[D(r) = 1]− Pr

z∈{0,1}t

[D(ExtNW (a, z)) = 1]
����

≤ Pr[X ∈ B] + ε ≤ 2ε

Theorem 18. Fix a constant ε; for every N and k = NΩ(1) there is a polynomial-

time computable (k, ε)-extractor Ext : {0, 1}N × {0, 1}t → {0, 1}m where m = k1/3

and t = O(log N).

BIBLIOGRAPHY

[ACR97] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Optimal bounds for
the approximation of boolean functions and some applications. Theo-

retical Computer Science, 180:243–268, 1997.
[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general de-

randomization method. Journal of the ACM, 45(1):179–213, 1998.
[ACR99] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. Worst-case hardness

suffices for derandomization: A new method for hardness vs randomness
trade-offs. Theoretical Computer Science, 221:3–18, 1999.

[ACRT99] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weak
random sources, hitting sets, and BPP simulations. SIAM Journal

on Computing, 28(6):2103–2116, 1999. Preliminary version in Proc of

FOCS’97.
[AK97] V. Arvind and J. Köbler. On resource-bounded measure and pseudo-

randomness. In Proceedings of the 17th Conference on Foundations of

Software Technology and Theoretical Computer Science, pages 235–249.
LNCS 1346, Springer-Verlag, 1997.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in prob-
abilistic computation. In STACS’99, pages 100–109, 1999.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3(4):307–318, 1993.

[Gol99] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudo-

randomness. Springer-Verlag, 1999.
[GW99] O. Goldreich and A. Wigderson. Improved derandomization of BPP

using a hitting set generator. In RANDOM’99, pages 131–137, 1999.
[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In

Proceedings of the 36th IEEE Symposium on Foundations of Computer

Science, pages 538–545, 1995.
[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion

of hardness into pseudo-randomness. In Proceedings of the 40th IEEE

Symposium on Foundations of Computer Science, 1999.
[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-

random generators with optimal seed length. In Proceedings of the 32nd

ACM Symposium on Theory of Computing, pages 1–10, 2000.

25

26 LUCA TREVISAN, PSEUDORANDOMNESS – PART II

[IW97] R. Impagliazzo and A. Wigderson. P = BPP unless E has sub-
exponential circuits. In Proceedings of the 29th ACM Symposium on

Theory of Computing, pages 220–229, 1997.
[IW98] R. Impagliazzo and A. Wigderson. Randomness versus time: De-

randomization under a uniform assumption. In Proceedings of the 39th

IEEE Symposium on Foundations of Computer Science, pages 734–743,
1998.

[KvM99] A. Klivans and D. van Milkebeek. Graph non-isomorphism has subex-
ponential size proofs unless the polynomial hierarchy collapses. In Pro-

ceedings of the 31st ACM Symposium on Theory of Computing, pages
659–667, 1999.

[MV99] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin
games using hitting sets. In Proceedings of the 40th IEEE Symposium

on Foundations of Computer Science, pages 71–80, 1999.
[Nis96] N. Nisan. Extracting randomness: How and why. In Proceedings of

the 11th IEEE Conference on Computational Complexity, pages 44–58,
1996.

[NTS98] N. Nisan and A. Ta-Shma. Extrating randomness : A survey and new
constructions. Journal of Computer and System Sciences, 1998. To ap-
pear. Preliminary versions in [Nis96, TS96].

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Com-

puter and System Sciences, 49:149–167, 1994. Preliminary version in
Proc. of FOCS’88.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of

Computer and System Sciences, 52(1):43–52, 1996. Preliminary version
in Proc. of STOC’93.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness

and reducing the error in Trevisan’s extractors. In Proceedings of the

31st ACM Symposium on Theory of Computing, pages 149–158, 1999.
[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness by

repeated condensing. In Proceedings of the 41st IEEE Symposium on

Foundations of Computer Science, 2000.
[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators with-

out the XOR lemma. In Proceedings of the 31st ACM Symposium on

Theory of Computing, pages 537–546, 1999.
[Tre99] L. Trevisan. Construction of extractors using pseudo-random genera-

tors. In Proceedings of the 31st ACM Symposium on Theory of Com-

puting, pages 141–148, 1999.
[TS96] A. Ta-Shma. On extracting randomness from weak random sources.

In Proceedings of the 28th ACM Symposium on Theory of Computing,
pages 276–285, 1996.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings

of the 23th IEEE Symposium on Foundations of Computer Science,
pages 80–91, 1982.

[Zuc96] D. Zuckerman. Simulating BPP using a general weak random source.
Algorithmica, 16(4/5):367–391, 1996.

