Notes for Lecture 6

1 Kannan’s Theorem

Although it is open to prove that the polynomial hierarchy is not contained in P/poly, it is not hard to prove the following result.

Theorem 1 For every polynomial $p()$, there is a language $L \in \Sigma_4$ such that $L \not\in \text{SIZE}(O(p(n)))$.

Note that Theorem 1 is not saying that $\Sigma_4 \not\subseteq \text{P}/\text{poly}$, because for that to be true we would have to be able to construct a single language L such that for every polynomial p we have $L \not\in \text{SIZE}(p(n))$, instead of constructing a different language for each polynomial. (This is an important difference: the time hierarchy theorem gives us, for every polynomial $p()$, a language $L \in \text{P}$ such that $L \not\in \text{DTIME}(p(n))$, but this doesn’t mean that $\text{P} \not= \text{P}$.)

Kannan observed the following consequence of Theorem 1 and of the Karp-Lipton theorem.

Theorem 2 For every polynomial $p()$, there is a language $L \in \Sigma_2$ such that $L \not\in \text{SIZE}(O(p(n)))$.

Proof: We consider two cases:

- if $\text{3SAT} \not\in \text{SIZE}(O(p(n)))$; then we are done because $\text{3SAT} \in \text{NP} \subseteq \Sigma_2$.
- if $\text{3SAT} \in \text{SIZE}(O(p(n)))$, then $\text{NP} \subseteq \text{P}/\text{poly}$, so by the Karp-Lipton theorem we have $\Sigma_4 = \Sigma_2$, and the language $L \in \Sigma_4 - \text{SIZE}(O(p(n)))$ given by Theorem 1 is in Σ_2.

\square

2 Counting Classes

Recall that R is an NP-relation, if there is a polynomial time algorithm A such that $(x, y) \in R \Leftrightarrow A(x, y) = 1$ and there is a polynomial p such that $(x, y) \in R \Rightarrow |y| \leq p(|x|)$.

Definition 3 If R is an NP relation, then $\#R$ is the problem that, given x, asks how many y satisfy $(x, y) \in R$.

$\#\text{P}$ is the class of all problems of the form $\#R$, where R is an NP-relation.

Observe that an NP-relation R naturally defines an NP language L_R, where $L_R = \{x : \exists y. (x, y) \in R\}$, and every NP language can be defined in this way. Therefore problems in $\#\text{P}$ can always be seen as the problem of counting the number of witnesses for a given instance of an NP problem.

Unlike for decision problems there is no canonical way to define reductions for counting classes. There are two common definitions.
Definition 4 We say there is a parsimonious reduction from \#A to \#B (written \#A ≤_{par} \#B) if there is a polynomial time transformation f such that for all x, \{|y, (x, y) ∈ A| = |\{z : (f(x), z) ∈ B\}|\}.

Often this definition is a little too restrictive and we use the following definition instead.

Definition 5 \#A ≤ \#B if there is a polynomial time algorithm for \#A given an oracle that solves \#B.

\#CSAT is the problem where given a circuit, we want to count the number of inputs that make the circuit output 1.

Theorem 6 \#CSAT is \#P-complete under parsimonious reductions.

Proof: Let \#R be in \#P and A and p be as in the definition. Given x we want to construct a circuit C such that |\{z : C(z)| = |\{y : |y| ≤ p(|x|), A(x, y) = 1\}|. We then construct \(\hat{C}_n\) that on input x, y simulates A(x, y). From earlier arguments we know that this can be done with a circuit with size about the square of the running time of A. Thus \(\hat{C}_n\) will have size polynomial in the running time of \(A\) and so polynomial in \(|x|\). Then let C(y) = \(\hat{C}(x, y)\).

Theorem 7 \#3SAT is \#P-complete.

Proof: We show that there is a parsimonious reduction from \#CSAT to \#3SAT. That is, given a circuit C we construct a Boolean formula \(\phi\) such that the number of satisfying assignments for \(\phi\) is equal to the number of inputs for which C outputs 1. Suppose C has inputs \(x_1, \ldots, x_n\) and gates 1, \ldots, m and \(\phi\) has inputs \(x_1, \ldots, x_n, g_1, \ldots, g_m\), where the \(g_i\) represent the output of gate \(i\). Now each gate has two input variables and one output variable. Thus a gate can be complete described by mimicking the output for each of the 4 possible inputs. Thus each gate can be simulated using at most 4 clauses. In this way we have reduced C to a formula \(\phi\) with \(n + m\) variables and \(4m\) clauses. So there is a parsimonious reduction from \#CSAT to \#3SAT.

Notice that if a counting problem \#R is \#P-complete under parsimonious reductions, then the associated language \(L_R\) is \textbf{NP}-complete, because \#3CSAT ≤_{par} \#R implies CSAT ≤ \(L_R\). On the other hand, with the less restrictive definition of reducibility, even some counting problems whose decision version is in \textbf{P} are \#P-complete. For example, the problem of counting the number of satisfying assignments for a given 2CNF formula and the problem of counting the number of perfect matchings in a given bipartite graphs are both \#P-complete.

3 Complexity of counting problems

We will prove the following theorem:

Theorem 8 For every counting problem \#A in \#P, there is a probabilistic algorithm C that on input x, computes with high probability a value v such that

\[(1 − \epsilon)\#A(x) ≤ v ≤ (1 + \epsilon)\#A(x) \]

in time polynomial in \(|x|\) and in \(\frac{1}{\epsilon}\), using an oracle for \textbf{NP}.

The theorem says that \#P can be approximate in BPP^{NP}. We remark that approximating \#CSAT is NP-hard, and so to compute an approximation we need at least the power of NP. Theorem 8 states that the power of NP and randomization is sufficient.

Another remark concerns the following result.

Theorem 9 (Toda) For every \(k\), \(\Sigma_k \subseteq \text{P}^\#P\).

This implies that \#CSAT is \(\Sigma_k\)-hard for every \(k\), i.e., \#CSAT lies outside the polynomial hierarchy, unless the hierarchy collapses. Recall that BPP lies inside \(\Sigma_2\), and hence approximating \#CSAT can be done in \(\Sigma_3\). Therefore, approximating \#CSAT cannot be equivalent to computing \#CSAT exactly, unless the polynomial hierarchy collapses.

We first make some observations so that we can reduce the proof to the task of proving a simpler statement.

- It is enough to prove the theorem for \#CSAT.
 If we have an approximation algorithm for \#CSAT, we can extend it to any \#A in \#P using the parsimonious reduction from \#A to \#CSAT.

- It is enough to give a polynomial time \(O(1)\)-approximation for \#CSAT.
 Suppose we have an algorithm \(A\) and a constant \(c\) such that
 \[
 \frac{1}{c} \#CSAT(C) \leq A(C) \leq c \#CSAT(C). \tag{2}
 \]

Given a circuit \(C\), we can construct \(C^k = C_1 \land C_2 \land \cdots \land C_k\) where each \(C_i\) is a copy of \(C\) constructed using fresh variables. If \(C\) has \(t\) satisfying assignments, \(C^k\) has \(t^k\) satisfying assignments. Then, giving \(C^k\) to the algorithm we get

\[
\frac{1}{c} t^k \leq A(C^k) \leq c t^k
\]

\[
\frac{1}{c} t^{1/k} \leq A(C^k)^{1/k} \leq c^{1/k} t.
\]

If \(c\) is a constant and \(k = O(\frac{1}{\epsilon})\), \(c^{1/k} \leq 1 + \epsilon\).

- For a circuit \(C\) that has \(O(1)\) satisfying assignments, \(#CSAT(C)\) can be computed in \(\text{P}^{NP}\).

This can be done by iteratively asking the oracle the questions of the form: “Are there \(k\) assignments satisfying this circuit?” Notice that these are NP questions, because the algorithm can guess these \(k\) assignments and check them.

1. The above discussion was not very rigorous but it can be correctly formalized. In particular: (i) from the fact that BPP \(\subseteq \Sigma_2\) and that approximate counting is doable in BPP^{NP} it does not necessarily follow that approximate counting is in \(\Sigma_3\), although in this case it does because the proof that BPP \(\subseteq \Sigma_2\) relativizes; (ii) we have defined BPP, \(\Sigma_3\), etc., as classes of decision problems, while approximate counting is not a decision problem (it can be shown, however, to be equivalent to a “promise problem,” and the inclusion BPP \(\subseteq \Sigma_2\) holds also for promise problems.
4 Using an approximate comparison procedure

Suppose that we had available an approximate comparison procedure \(a\text{-comp} \) with the following properties:

- If \(\#CSAT(C) \geq 2^{k+1} \) then \(a\text{-comp}(C, k) = \text{YES} \) with high probability;
- If \(\#CSAT(C) < 2^k \) then \(a\text{-comp}(C, k) = \text{NO} \) with high probability.

Given \(a\text{-comp} \), we can construct an algorithm that 2-approximates \(\#CSAT \) as described below:

- Input: \(C \)
- compute:
 - \(a\text{-comp}(C, 0) \)
 - \(a\text{-comp}(C, 1) \)
 - \(a\text{-comp}(C, 2) \)
 - ...
 - \(a\text{-comp}(C, n) \)
- if \(a\text{-comp} \) outputs \text{NO} from the first time then
 - // The value is either 0 or 1 and the answer can be checked by one more query to the \text{NP} oracle.
 - Query to the oracle and output an exact value.
- else
 - Suppose that it outputs \text{YES} for \(t = 1, \ldots, i - 1 \) and \text{NO} for \(t = i \)
 - Output \(2^i \)

We need to show that this algorithm approximates \(\#CSAT \) within a factor of 2. If \(a\text{-comp} \) answers \text{NO} from the first time, the algorithm outputs the right answer because it checks for the answer explicitly. Now suppose \(a\text{-comp} \) says \text{YES} for all \(t = 1, 2, \ldots, i - 1 \) and says \text{NO} for \(t = i \). Since \(a\text{-comp}(C, i - 1) \) outputs \text{YES}, \(\#CSAT(C) \geq 2^{i-1} \), and also since \(a\text{-comp}(C, 2^i) \) outputs \text{NO}, \(\#CSAT(C) < 2^{i+1} \). The algorithm outputs \(a = 2^i \). Hence,

\[
\frac{1}{2} a \leq \#CSAT(C) < 2 \cdot a
\]

and the algorithm outputs the correct answer within a factor of 2.

Thus, to establish the theorem, it is enough to give a \(\text{BPP}^{\text{NP}} \) implementation of the \(a\text{-comp} \) procedure.