
U.C. Berkeley — CS276: Cryptography Handout N1
Luca Trevisan January 20, 2009

Notes for Lecture 1

This course assumes CS170, or equivalent, as a prerequisite. We will assume that
the reader is familiar with the notions of algorithm and running time, as well as with
basic notions of algebra (for example arithmetic in finite fields), discrete math and
probability.

General information about the class, including prerequisites, grading, and recom-
mended references, are available on the class home page.

Cryptography is the mathematical foundation on which one builds secure systems.
It studies ways of securely storing, transmitting, and processing information. Un-
derstanding what cryptographic primitives can do, and how they can be composed
together, is necessary to build secure systems, but not sufficient. Several additional
considerations go into the design of secure systems, and they are covered in various
Berkeley graduate courses on security.

In this course we will see a number of rigorous definitions of security, some of them
requiring seemingly outlandish safety, even against entirely implausible attacks, and
we shall see how if any cryptography at all is possible, then it is also possible to
satisfy such extremely strong notions of security. For example, we shall look at a
notion of security for encryption in which an adversary should not be able to learn
any information about a message given the ciphertext, even if the adversary is allowed
to get encodings of any messages of his choice, and decodings of any ciphertexts of his
choices, with the only exception of the one he is trying to decode.

We shall also see extremely powerful (but also surprisingly simple and elegant) ways
to define security for protocols involving several untrusted participants.

Learning to think rigorously about security, and seeing what kind of strength is
possible, at least in principle, is one of the main goals of this course. We will also
see a number of constructions, some interesting for the general point they make
(that certain weak primitives are sufficient to make very strong constructions), some
efficient enough to have made their way in commercial products.

1 Alice, Bob, Eve, and the others

Most of this class will be devoted to the following simplified setting: Alice and Bob
communicate over an insecure channel, such as the internet or a cell phone. An
eavesdropper, Eve, is able to see the whole communication and to inject her own
messages in the channel.

1

http://www.cs.berkeley.edu/~luca/cs276


Alice and Bob hence want to find a way to encode their communication so as to
achieve:

• Privacy: Eve should have no information about the content of the messages
exchanged between Alice and Bob;

• Authentication: Eve should not be able to impersonate Alice, and every time
that Bob receives a message from Alice, he should be sure of the identity of the
sender. (Same for messages in the other direction.)

For example, if Alice is your laptop and Bob is your wireless router, you might want
to make sure that your neighbor Eve cannot see what you are doing

on the internet, and cannot connect using your router.

For this to be possible, Alice and Bob must have some secret information that Eve
ignores, otherwise Eve could simply run the same algorithms that Alice does, and
thus be able to read the messages received by Alice and to communicate with Bob
impersonating Alice.

In the classical symmetric-key cryptography setting, Alice and Bob have met before
and agreed on a secret key, which they use to encode and decode message, to produce
authentication information and to verify the validity of the authentication informa-
tion.

In the public-key setting, Alice has a private key known only to her, and a public key
known to everybody, including Eve; Bob too has his own private key and a public
key known to everybody. In this setting, private and authenticated communication
is possible without Alice and Bob having to meet to agree on a shared secret key.

This gives rise to four possible problems (symmetric-key encryption, symmetric-key
authentication, public-key encrpytion, and public-key authentication, or signatures),
and we shall spend time on each of them. This will account for more than half of the
course.

The last part of the course will deal with a fully general set-up in which any number of
parties, including any number of (possibly colluding) bad guys, execute a distributed
protocol over a communication network.

In between, we shall consider some important protocol design problems, which will
play a role in the fully general constructions. These will be commitment schemes,
zero-knowledge proofs and oblivious transfer.

2



2 The Pre-history of Encryption

The task of encoding a message to preserve privacy is called encryption (the decoding
of the message is called decrpytion), and methods for symmetric-key encryption have
been studied for literally thousands of years.

Various substitution ciphers were invented in cultures having an alphabetical writ-
ing system. The secret key is a permutation of the set of letters of the alphabet,
encryption is done by applying the permutation to each letter of the message, and
decryption is done by applying the inverse permutation. Examples are

• the Atbash ciphers used for Hebrew, in which the first letter of the alphabet is
replaced with the last, the second letter with the second-to-last, and so on. It
is used in the book of Jeremiah

• the cipher used by Julius Caesar, in which each letter is shifted by three positions
in the alphabet.

There are reports of similar methods used in Greece. If we identify the alphabet with
the integers {0, . . . , k− 1}, where k is the size of the alphabet, then the Atbash code
is the mapping x → k − 1 − x and Caesar’s code is x → x + 3 mod k. In general, a
substitution code of the form x → x + i mod k is trivially breakable because of the
very small number of possible keys that one has to try. Reportedly, former Mafia
boss Bernardo Provenzano used Caesar’s code to communicate with associates while
he was a fugitive. (It didn’t work too well for him.)

The obvious flaw of such kind of substitution ciphers is the very small number of
possible keys, so that an adversary can simply try all of them.

Substitution codes in which the permutation is allowed to be arbitrary were used
through the middle ages and modern times. In a 26-letter alphabet, the number of
keys is 26!, which is too large for a brute-force attack. Such systems, however, suffer
from easy total breaks because of the facts that, in any given language, different
letters appear with different frequencies, so that Eve can immediately make good
guesses for what are the encryptions of the most common letters, and work out the
whole code with some trial and errors. This was noticed already in the 9th century
A.D. by Arab scholar al-Kindy. Sherlock Holmes breaks a substitution cipher in The
Adventure of the Dancing Men.

For fun, try decoding the following message. (A permutation over the English alpha-
bet has been applied; spaces have been removed before encoding.)

IKNHQHNWKZHTHNHPZKTPKAZYASNKOOAVHNPSAETKOHQHNCH
HZSKBZRHYKBRCBRNHIBOHYRKCHXZKSXHYKBRAZYIKNHQHNWK
ZHETKTAOORBVCFHYCBRORKKYNPDTRCASXBLAZYIKNHQHNWK

3

http://www.theregister.co.uk/2006/04/19/mafia_don_clueless_crypto/


ZHETKEKNXOTANYAZYZHQHNDPQHOBLRTPOKZHPOIKNWKBWKB
XZKEETARRTHWOAWAOKTPKDKHOOKDKHORTHZARPKZEHFFRT
POZARPKZOSKVPZDCASXAZYOKPORTPOSAVLAPDZRTHLHKLFHK
IKTPKTAQHOAPYPRFKBYFWAZYSFHANFWEHNHDKPZDKZEHNHDK
PZDORNKZDAZYEHNHDKPZDAFFRTHEAWWKBXZKERTHWSAFFKT
PKACHFFEHRTHNORARHPROACARRFHDNKBZYORARHPROAORA
RHRTARXZKEOTKERKLPSXALNHOPYHZRAZYZKSAZYPYARHPZNH
SHZRTPORKNWYHVKSNARKNNHLBCFPSAZTAOEKZRTHETPRHTK
BOHEPRTKBREPZZPZDRTHKTPKLNPVANW

Other substitution ciphers were studied, in which the code is based on a permutation
over Σt, where Σ is the alphabet and t a small integers. (For example, the code
would specify a permutation over 5-tuples of characters.) Even such systems suffer
from (more sophisticated) frequency analysis.

Various tricks have been conceived to prevent frequency analysis, such as changing the
permutation at each step, for example by combining it with a cyclic shift permutation.
(The German Enigma machines used during WWII used multiple permutations, and
applied different shift on each application.)

More generally, however, most classic methods suffer from the problem of being de-
terministic encryption schemes: If the same message is sent twice, the encryptions
will be the same. This can be disastrous when the code is used with a (known) small
set of possible messages

This xkcd cartoon makes this point very aptly.

(The context of the cartoon is that, reportedly, during WWII, some messages were
encrypted by translating them into the Navajo language, the idea being that there

4

http://xkcd.com/257/


was no Navajo speaker outside of North America. As the comic shows, even though
this could be a very hard permutation to invert without the right secret information,
this is useless if the set of encrypted messages is very small.)

Look also at the pictures of the two encodings of the Linux penguin on the Wikipedia
page on block ciphers.

Here is an approach that has large key space, which prevents single-character fre-
quency analysis, and which is probabilistic.

Alice and Bob have agreed on a permutation P of the English alphabet Σ = {A, . . . , Z},
and they think of it as a group, for example by identifying Σ with Z/26Z, the integers
mod 26.

When Alice has a message m1 · · ·mk to send, she first picks a random letter r, and
then she produces an encryption c0, c1, . . . , ck by setting c0 = r and ci := P (ci−1+mi).
Then Bob will decode c0, . . . , ck by setting mi := P (−1)(ci)− ci−1.

Unfortunately, this method suffers from two-character frequency analysis. You might
try to amuse yourselves by decoding the following ciphertext (encoded with the above
described method):

HTBTOOWCHEZPWDVTBYQWHFDBLEDZTESGVFO
SKPOTWILEJQBLSOYZGLMVALTQGVTBYQPLHAKZ
BMGMGDWSTEMHNBVHMZXERHJQBEHNKPOMJDP
DWJUBSPIXYNNRSJQHAKXMOTOBIMZTWEJHHCFD
BMUETCIXOWZTWFIACZLRVLTQPDBDMFPUSPFYW
XFZXXVLTQPABJFHXAFTNUBBJSTFHBKOMGYXGKC
YXVSFRNEDMQVBSHBPLHMDOOYMVWJSEEKPILOB
AMKMXPPTBXZCNNIDPSNRJKMRNKDFQZOMRNFQZ
OMRNF

As we shall see later, this idea has merit if used with an exponentially big permutation,
and this fact will be useful in the design of actual secure encryption schemes.

3 Perfect Security and One-Time Pad

Note that if Alice only ever sends one one-letter message m, then just sending P (m)
is completely secure: regardless of what the message m is, Eve will just see a random
letter P (m). That is, the distribution (over the choice of the secret key P ) of encodings
of a message m is the same for all messages m, and thus, from the point of view of
Eve, the encryption is statistically independent of the message.

This is an ideal notion of security: basically Eve might as well not be listening to the
communication, because the communication gives no information about the message.
The same security can be obtained using a key of log 26 bits (instead of log 26! as

5

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation


necessary to store a random permutation) by Alice and Bob sharing a random letter
r, and having Alice send m + r.

In general, is Alice wants to send a message m ∈ Σk, and Alice and Bob share a
random secret r ∈ Σk, then it is perfectly secure as above to send m1+r1, . . . ,mk +rk.

This encoding, however, can be used only once (think of what happens when several
messages are encoded using this process with the same secret key) and it is called one-
time pad. It has, reportedly, been used in several military and diplomatic applications.

The inconvenience of one-time pad is that Alice and Bob need to agree in advance
on a key as large as the total length of all messages they are ever going to exchange.
Obviously, your laptop cannot use one-time pad to communicate with your base
station.

Shannon demonstrated that perfect security requires this enormous key length. With-
out getting into the precise result, the point is that if you have an n-bit message and
you use a k-bit key, k < n, then Eve, after seeing the ciphertext, knows that the orig-
inal message is one of 2k possible messages, whereas without seeing the ciphertext
she only knew that it was one of 2n possible messages.

When the original message is written, say, in English, the consequence of short key
length can be more striking. English has, more or less, one bit of entropy per letter
which means (very roughly speaking) that there are only about 2n meaningful n-letter
English sentences, or only a (1/13)n fraction of all (26)n possible n-letter strings.
Given a ciphertext encoded with a k-bit key, Eve knows that the original message is
one of 2k possible messages. Chances are, however, that only about 2k · (13)−n such
messages are meaningful English sentences. If k is small enough compared to n, Eve
can uniquely reconstruct the original message. (This is why, in the two examples
given above, you have enough information to actually reconstruct the entire original
message.)

When n >> k, for example if we use an 128-bit key to encrypt a 4GB movie, virtually
all the information of the original message is available in the encryption. A brute-
force way to use that information, however, would require to try all possible keys,
which would be infeasible even with moderate key lengths. Above, we have seen two
examples of encryption in which the key space is fairly large, but efficient algorithms
can reconstruct the plaintext. Are there always methods to efficiently break any
cryptosystem?

We don’t know. This is equivalent to the question of whether one-way functions
exist, which is probably an extremely hard question to settle. (If, as believed, one-
way functions do exist, proving their existence would imply a proof that P 6= NP .)

We shall be able, however, to prove the following dichotomy: either one-way functions
do not exist, in which case any approach to essentially any cryptographic problem is
breakable (with exceptions related to the one-time pad), or one-way functions exist,

6



and then all symmetric-key cryptographic problems have solutions with extravagantly
strong security guarantees.

Next, we’ll see how to formally define security for symmetric-key encryption, and how
to achieve it using various primitives.

7


