
U.C. Berkeley — CS276: Cryptography Handout N7
Luca Trevisan February 10, 2009

Notes for Lecture 7

Scribed by Mark Landry, posted February 15, 2009

Summary

Today we start to talk about message authentication codes (MACs). The goal of a
MAC is to guarantee to the recipient the integrity of a message and the identity of the
sender. We provide a very strong definition of security (existential unforgeability under
adaptive chosen message attack) and show how to achieve it using pseudorandom
functions.

Our solution will be secure, but inefficient in terms of length of the required authen-
tication information.

Next time we shall see a more space-efficient authentication scheme, and we shall
prove that given a CPA-secure encryption scheme and a secure MAC, one can get
a CCA-secure encryption scheme. (That is, an encryption scheme secure against an
adaptive chosen ciphertext and plaintext attack.)

1 Message Authentication

The goal of message authentication is for two parties (say, Alice and Bob) who share
a secret key to ensure the integrity and authenticity of the messages they exchange.
When Alice wants to send a message to Bob, she also computes a tag, using the secret
key, which she appends to the message. When Bob receives the message, he verifies
the validity of the tag, again using the secret key.

The syntax of an authentication scheme is the following.

Definition 1 (Authentication Scheme) An authentication scheme is a pair of al-
gorithms (Tag, V erify), where Tag(·, ·) takes in input a key K ∈ {0, 1}k and a mes-
sage M and outputs a tag T , and V erify(·, ·, ·) takes in input a key, a message, and
a tag, and outputs a boolean answers. We require that for every key K, and very
message M

V erify(K,M, Tag(K,M)) = True

if Tag(·, ·) is deterministic, and we require

1

P[V erify(K,M, Tag(K,M)) = True] = 1

if Tag(·, ·) is randomized.

In defining security, we want to ensure that an adversary who does not know the
private key is unable to produce a valid tag. Usually, an adversary may attempt to
forge a tag for a message after having seen other tagged messages, so our definition of
security must ensure that seeing tagged messages does not help in producing a forgery.
We provide a very strong definition of security by making sure that the adversary is
able to tag no new messages, even after having seen tags of any other messages of her
choice.

Definition 2 (Existential unforgeability under chosen message attack) We say
that an authentication scheme (Tag, V erify) is (t, ε)-secure if for every algorithm A
of complexity at most t

P
K

[ATag(K,·) = (M,T) : (M,T) is a forge] ≤ ε

where a pair (M,T) is a “forge” if V erify(K,M, T) = True and M is none of the
messages that A queried to the tag oracle.

This definition rules out any possible attack by an active adversary except a replay
attack, in which the adversary stores a tagged message it sees on the channel, and
later sends a copy of it. We still are guaranteed that any message we see was sent
at some time by the right party. To protect against replay attacks, we could include
a timestamp with the message, and reject messages that are too old. We’ll assume
that replay attacks are handled at a higher level and will not worry about them.

2 Construction for Short Messages

Suppose F : {0, 1}k × {0, 1}m → {0, 1}m is a pseudorandom function. A simple
scheme is to use the pseudorandom function as a tag:

• Tag(K,M) := FK(M)

• V erify(K,M, T) := True if T = FK(M), False otherwise

This construction works only for short messages (of the same length as the input of
the pseudorandom function), but is secure.

2

Theorem 3 If F is a (t, ε)-secure pseudorandom function, then the above construc-
tion is a (t−O(m), ε+ 2−m)-secure authentication scheme.

Proof: First, let R : {0, 1}m → {0, 1}m be a truly random function, and AR(·)() an
algorithm with oracle access to R(·) and complexity at most t. Then

P
R(·)

[AR(·)() = (M,T) : M,T is a forgery] = P
R(·)

[R(M) = T] = 2−m.

Now, define an algorithm A′O(·) that returns 1 iff O(M) = T , where M,T are the
values computed by AO(·)(). Then

|P[AR(·) is a forgery]− P[AFK(·) is a forgery]| = |P[A′R(·) = 1]− P[A′FK(·) = 1]| ≤ ε

Where the last inequality is due to the definition of a pseudo-random function. From
this it follows that

P[AFK(·) is a forgery] ≤ P[AR(·)() is a forgery]

+|P[AR(·) is a forgery]− P[AFK(·) is a forgery]|
≤ 2−m + ε

�

3 Construction for Messages of Arbitrary Length

Suppose we now have a longer message M , which we write as M := M1, . . . ,M`

with each block Mi being of the same length as the input of a given pseudorandom
function.

There are various simple constructions we described in class that do not work. Here
are some examples:

Example 4 Tag(K,M) := FK(M1), . . . , FK(M`). This authentication scheme al-
lows the advisary to rearrange, repeate, or remove blocks of the message. Therefore
it is insecure.

Example 5 Tag(K,M) := FK(1,M1), . . . , FK(`,M`). This authentication scheme
prevents the advisary from reordering blocks of the message, but it still allows the
advisary to truncate the message or to interleave blocks from two previously seen
messages.

3

Example 6 Tag(K,M) := r, FK(r, 1,M1), . . . , FK(r, `,M`). This scheme adds a
randomized message identifier, and it prevents interleaving blocks from different mes-
sages, but it still fails to protect the message from being truncated by the advisary.

The following construction works:

Let F : {0, 1}k × {0, 1}m → {0, 1}m be a pseudorandom function, M be the message
we want to tag, and write M = M1, . . . ,M` where each block Mi is m/4 bits long.

• Tag(K,M):

– Pick a random r ∈ {0, 1}m/4,

– output r, T1, . . . , T`, where

Ti := FK(r, `, i,Mi)

• V erify(K, (M1, . . . ,M`), (r, T1, . . . , T`):

– Output True if and only if Ti = FK(r, `, i,Mi)

Theorem 7 If F is (t, ε)-secure, the above scheme is (Ω(t), ε+t2·2−m/4+2−m)-secure.

Proof: Define (T, V) as the authentication scheme above. Define (T̄ , V̄) in the same
way, except using a truly random function R in place of FK . Let A be an algorithm
of complexity at most t.

Consider AT̄ . Note that A can make at most t oracle queries. Define FORGE as the
event in which AT̄ never queries M , and produces a tag T for which V̄ (M,T) = yes.
Define REP as the event in which, for two different oracle queries, A receives tags with
same r.

Now,

P[REP] = P[∃ a repetition among r1, . . . , rt]

≤
∑

i

∑
j

P[ri = rj]

= t22−m/4

Consider the event FORGE ∧ ¬REP. Suppose our oracle queries, and the resulting
random strings, were:

M1
1 , . . . ,M

1
l1
→ r1

M2
1 , . . . ,M

2
l2
→ r2

. . .

4

M1
1 , . . . ,M

1
l1
→ r1

M2
1 , . . . ,M

2
l2
→ r2

. . .

Then we know i 6= j ⇒ ri 6= rj. Now, the algorithm outputs message

M1, . . . ,M`

with a valid tag

r, T1, . . . , T`

Then there are the following cases:

• Case1: r 6= ri∀i. Then the algorithm computed T1 = R(r, `, 1,M1) without
having seen it before.

• Case2: r was seen before, so it occured exactly once, in the Tag for the jth

query.

– Case 2a: `j 6= `. Then we computed T1 = R(r, `, 1,M1) without having
seen it before.

– Case 2b: `j = `. We know M 6= M j, so ∃i : M j
i 6= Mi. thus we computed

Ti = R(r, `, i,Mi) without having seen it before

Thus, in the event FORGE ∧ ¬REP, we constructed some Ti = R(r, `, i,Mi) without
sending (r, `, i,Mi) to the oracle. Since R is truely random, this can only occur with
prbability 2−m.

Now,

P[AT̄ is a forgery] = P[FORGE]

= P[FORGE ∧ REP] + P[FORGE ∧ ¬REP]

≤ P[REP] + P[FORGE ∧ ¬REP]

≤ t22−m/4 + 2−m

So finally we have

P[AT () is a forgery] ≤ |P[AT () is a forgery]− P[AT̄ () is a forgery]|+ P[AT̄ () is a forgery]

≤ ε+ t22−m/4 + 2−m

5

�

6

	Message Authentication
	Construction for Short Messages
	Construction for Messages of Arbitrary Length

