U.C. Berkeley — CS276: Cryptography Handout N12
Luca Trevisan February 26, 2009

Notes for Lecture 12

Scribed by Jonah Sherman , posted March 10, 2009

Summary

Today we prove the Goldreich-Levin theorem.

1 Goldreich-Levin Theorem

We use the notation
(x,r) = inri mod 2 (1)

Theorem 1 (Goldreich and Levin) Let f : {0,1}" — {0,1}" be a permutation
computable in time r. Suppose that A is an algorithm of complexity t such that

PIA(f(2),7) = {z.r)] 2 5 +e &)

x,T

Then there is an algorithm A’ of complexity at most O((t 4 r)e~2n°M) such that

PA'(f(z)) = 2] =

T

P

Last time we proved the following partial result.

Lemma 2 (Goldreich-Levin Algorithm — Weak Version) Suppose we have ac-
cess to a function H : {0,1}" — {0,1} such that, for some unknown x, we have

[H(r) = {(z,r)] =

re{0,1}»

ool 3

(3)

where x € {0,1}" is an unknown string.

Then there is an algorithm GLW that runs in time O(n*logn) and makes O(nlogn)
oracle queries into H and, with probability at least 1 — %, outputs x.

1

This gave us a proof of a variant of the Goldreich-Levin Theorem in which the right-
hand-side in (2) was 12. We could tweak the proof Lemma 2 so that the right-hand-
side of (4) is % + €, leading to proving a variant of the Goldreich-Levin Theorem in
which the right-hand-side in (2) is also 2 + ¢.

We need, however, the full Goldreich-Levin Theorem in order to construct a pseudo-
random generator, and so it seems that we have to prove a strengthening of Lemma
2 in which the right-hand-side in (4) is £ + .

Unfortunately such a stronger version of Lemma 2 is just false: for any two different
x,x" € {0,1}" we can construct an H such that

H() = (o) =

r~{0,1}n

and

3
P [H(r)=(z"r)] =7
re{0,1}7 4

so no algorithm can be guaranteed to find = given an arbitrary function H such that
P[H(r) = (z,7)] = 3, because x need not be uniquely defined by H.

We can, however, prove the following:

Lemma 3 (Goldreich-Levin Algorithm) Suppose we have access to a function
H :{0,1}" — {0,1} such that, for some unknown x, we have

P H()={rn)] 2 5+)
re{0,1}»

where x € {0,1}" is an unknown string, and € > 0 is given.

Then there is an algorithm GL that runs in time O(n?e *logn), makes O(ne *logn)
oracle queries into H, and outputs a set L C {0,1}" such that |L| = O(e~?) and with
probability at least 1/2, x € L.

The Goldreich-Levin algorithm G'L has other interpretations (an algorithm that learns
the Fourier coefficients of H, an algorithm that decodes the Hadamard code is sub-
linear time) and various applications outside cryptography.

The Goldreich-Levin Theorem is an easy consequence of Lemma 3. Let A’ take input
y and then run the algorithm of Lemma 3 with H(r) = A(y,), yielding a list L. A’
then checks if f(z) =y for any « € L, and outputs it if one is found.

From the assumption that

PIA(f(2),) = {e.1)] 2 5 +e

x,T

it follows by Markov’s inequality (See Lemma 9 in the last lecture) that

P PA((@) = (@) = 5+ 5| >

€
2

Let us call an = such that P.[A(f(z),r) = (z,r)] > 1+ + £ a good z. If we pick = at
random and give f(x) to the above algorithm, there is a probability at least €/2 that
x is good and, if so, there is a probability at least 1/2 that x is in the list. Therefore,
there is a probability at least €/4 that the algorithm inverts f(), where the probability
is over the choices of x and over the internal randomness of the algorithm.

2 The Goldreich-Levin Algorithm

In this section we prove Lemma 3.

We are given an oracle H() such that H(r) = (x,r) for an 1/2 + ¢ fraction of the
r. Our goal will be to use H() to simulate an oracle that has agreement 7/8 with
(x,r), so that we can use the algorithm of Lemma 2 the previous section to find x.
We perform this “reduction” by “guessing” the value of (x,r) at a few points.

We first choose k random points ry ...7;, € {0,1}" where k = O(1/€?). For the mo-
ment, let us suppose that we have “magically” obtained the values (z,7),..., (x,r).
Then define H'(r) as the majority value of:

H(r+r;)—(z,r;) 7=1,2,...,k (5)

For each j, the above expression equals (x, r) with probability at least % + € (over the
choices of r;) and by choosing k = O(1/€?) we can ensure that

31
P [H(r)=(z,r)] > 5. (6)
Ty ey Tl 32
from which it follows that
, 7 3
P |PH(r)=(z,1)] > | >~ (7)
T1lyeeey Tk T 8 4

Consider the following algorithm.
function GL-FIRST-ATTEMPT
pick r,...,r, € {0,1}" where k = O(1/¢€?)
for all by,...,b, € {0,1} do

define H; , (r) as majority of: H(r +r;) —b;
apply Algorithm GLW to Hj .
add result to list
end for
return list
end function

The idea behind this program is that we do not in fact know the values (x,r;), but
we can “guess” them by considering all choices for the bits b;. If H(r) agrees with
(x,r) for at least a 1/2 + € fraction of the rs, then there is a probability at least 3/4
that in one of the iteration we invoke algorithm GLW with a simulated oracle that
has agreement 7/8 with (z,r). Therefore, the final list contains = with probability at
least 3/4 —1/n > 1/2.

The obvious problem with this algorithm is that its running time is exponential in
k = O(1/€®) and the resulting list may also be exponentially larger than the O(1/€?)
bound promised by the Lemma.

To overcome these problems, consider the following similar algorithm.
function GL

pick r,...,r; € {0,1}" where t = log O(1/€?)

define rg :=) ._or; for each non-empty S C {1,...,t}

jes
for all by,...,b, € {0,1} do

define bg := ¢ b; for each non-empty S C {1,...,t}

define H; , (r) as majority over non-empty S C {1,...,t} of H(r+rg)—bg
run Algorithm GLW with oracle Hy,

add result to list

end for
return list
end function

Let us now see why this algorithm works. First we define, for any nonempty S C
{1,...,t}, rs = > eg7j- Then, since ri,..., 7 € {0,1}" are random, it follows that
for any S # T, rg and rr are independent and uniformly distributed. Now consider
an z such that (z,r) and H(r) agree on a 3 + € fraction of the values of r. Then for
the choice of {b;} where b; = (z,r;) for all j, we have that

bs = (z,rs)

for every non-empty S. In such a case, for every S and every r, there is a probability
at least % + ¢, over the choices of the r; that

H(r+rs) —bs = (x,r),

and these events are pair-wise independent. Note the following simple lemma.

Lemma 4 Let Ry, ..., Ry be a set of pairwise independent O — 1 random variables,
each of which is 1 with probability at least 5 + €. Then P[Y_, R; > k/2] > 1 — 5.

PROOF: Let R = Ry +---+ R;. The variance of a 0/1 random variable is at most 1/4,
and, because of pairwise independence, Var[R| = Var[R;+...+Ry] = Y. Var[R;] <
k/4.

We then have

Var|R] < 1

< < — > <
PIR < k/2) < PIR - B[R] 2 b < ~5 00 < o

0

Lemma 4 allows us to upper-bound the probability that the majority operation used
to compute H' gives the wrong answer. Combining this with our earlier observation
that the {rg} are pairwise independent, we see that choosing t = log(128/¢?) suffices
to ensure that H; , (r) and (z,r) have agreement at least 7/8 with probability at
least 3/4. Thus we can use Algorithm A 1 to obtain x with high probability. Choosing
t as above ensures that the list generated is of length at most 2! = 128/€? and the
running time is then O(n?¢ *logn) with O(ne*logn) oracle accesses, due to the
O(1/€?) iterations of Algorithm GLW, that makes O(nlogn) oracle accesses, and to
the fact that one evaluation of H'() requires O(1/€*) evaluations of H().

	Goldreich-Levin Theorem
	The Goldreich-Levin Algorithm

