Notes for Lecture 12

Scribed by Jonah Sherman, posted March 10, 2009

Summary

Today we prove the Goldreich-Levin theorem.

1 Goldreich-Levin Theorem

We use the notation

$$
\begin{equation*}
\langle x, r\rangle:=\sum_{i} x_{i} r_{i} \bmod 2 \tag{1}
\end{equation*}
$$

Theorem 1 (Goldreich and Levin) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a permutation computable in time r. Suppose that A is an algorithm of complexity t such that

$$
\begin{equation*}
\underset{x, r}{\mathbb{P}}[A(f(x), r)=\langle x, r\rangle] \geq \frac{1}{2}+\epsilon \tag{2}
\end{equation*}
$$

Then there is an algorithm A^{\prime} of complexity at most $O\left((t+r) \epsilon^{-2} n^{O(1)}\right)$ such that

$$
\underset{x}{\mathbb{P}}\left[A^{\prime}(f(x))=x\right] \geq \frac{\epsilon}{4}
$$

Last time we proved the following partial result.
Lemma 2 (Goldreich-Levin Algorithm - Weak Version) Suppose we have access to a function $H:\{0,1\}^{n} \rightarrow\{0,1\}$ such that, for some unknown x, we have

$$
\begin{equation*}
\underset{r \in\{0,1\}^{n}}{\mathbb{P}}[H(r)=\langle x, r\rangle] \geq \frac{7}{8} \tag{3}
\end{equation*}
$$

where $x \in\{0,1\}^{n}$ is an unknown string.
Then there is an algorithm GLW that runs in time $O\left(n^{2} \log n\right)$ and makes $O(n \log n)$ oracle queries into H and, with probability at least $1-\frac{1}{n}$, outputs x.

This gave us a proof of a variant of the Goldreich-Levin Theorem in which the right-hand-side in (2) was $\frac{15}{16}$. We could tweak the proof Lemma 2 so that the right-handside of (4) is $\frac{3}{4}+\epsilon$, leading to proving a variant of the Goldreich-Levin Theorem in which the right-hand-side in (2) is also $\frac{3}{4}+\epsilon$.
We need, however, the full Goldreich-Levin Theorem in order to construct a pseudorandom generator, and so it seems that we have to prove a strengthening of Lemma 2 in which the right-hand-side in (4) is $\frac{1}{2}+\epsilon$.
Unfortunately such a stronger version of Lemma 2 is just false: for any two different $x, x^{\prime} \in\{0,1\}^{n}$ we can construct an H such that

$$
\underset{r \sim\{0,1\}^{n}}{\mathbb{P}}[H(r)=\langle x, r\rangle]=\frac{3}{4}
$$

and

$$
\underset{r \sim\{0,1\}^{n}}{\mathbb{P}}\left[H(r)=\left\langle x^{\prime}, r\right\rangle\right]=\frac{3}{4}
$$

so no algorithm can be guaranteed to find x given an arbitrary function H such that $\mathbb{P}[H(r)=\langle x, r\rangle]=\frac{3}{4}$, because x need not be uniquely defined by H.
We can, however, prove the following:

Lemma 3 (Goldreich-Levin Algorithm) Suppose we have access to a function $H:\{0,1\}^{n} \rightarrow\{0,1\}$ such that, for some unknown x, we have

$$
\begin{equation*}
\underset{r \in\{0,1\}^{n}}{\mathbb{P}}[H(r)=\langle x, r\rangle] \geq \frac{1}{2}+\epsilon \tag{4}
\end{equation*}
$$

where $x \in\{0,1\}^{n}$ is an unknown string, and $\epsilon>0$ is given.
Then there is an algorithm GL that runs in time $O\left(n^{2} \epsilon^{-4} \log n\right)$, makes $O\left(n \epsilon^{-4} \log n\right)$ oracle queries into H, and outputs a set $L \subseteq\{0,1\}^{n}$ such that $|L|=O\left(\epsilon^{-2}\right)$ and with probability at least $1 / 2, x \in L$.

The Goldreich-Levin algorithm $G L$ has other interpretations (an algorithm that learns the Fourier coefficients of H, an algorithm that decodes the Hadamard code is sublinear time) and various applications outside cryptography.

The Goldreich-Levin Theorem is an easy consequence of Lemma 3. Let A^{\prime} take input y and then run the algorithm of Lemma 3 with $H(r)=A(y, r)$, yielding a list $L . A^{\prime}$ then checks if $f(x)=y$ for any $x \in L$, and outputs it if one is found.
From the assumption that

$$
\underset{x, r}{\mathbb{P}}[A(f(x), r)=\langle x, r\rangle] \geq \frac{1}{2}+\epsilon
$$

it follows by Markov's inequality (See Lemma 9 in the last lecture) that

$$
\underset{x}{\mathbb{P}}\left[\underset{r}{\mathbb{P}}[A(f(x), r)=\langle x, r\rangle] \geq \frac{1}{2}+\frac{\epsilon}{2}\right] \geq \frac{\epsilon}{2}
$$

Let us call an x such that $\mathbb{P}_{r}[A(f(x), r)=\langle x, r\rangle] \geq \frac{1}{2}+\frac{\epsilon}{2}$ a $\operatorname{good} x$. If we pick x at random and give $f(x)$ to the above algorithm, there is a probability at least $\epsilon / 2$ that x is good and, if so, there is a probability at least $1 / 2$ that x is in the list. Therefore, there is a probability at least $\epsilon / 4$ that the algorithm inverts $f()$, where the probability is over the choices of x and over the internal randomness of the algorithm.

2 The Goldreich-Levin Algorithm

In this section we prove Lemma 3.
We are given an oracle $H()$ such that $H(r)=\langle x, r\rangle$ for an $1 / 2+\epsilon$ fraction of the r. Our goal will be to use $H()$ to simulate an oracle that has agreement $7 / 8$ with $\langle x, r\rangle$, so that we can use the algorithm of Lemma 2 the previous section to find x. We perform this "reduction" by "guessing" the value of $\langle x, r\rangle$ at a few points.
We first choose k random points $r_{1} \ldots r_{k} \in\{0,1\}^{n}$ where $k=O\left(1 / \epsilon^{2}\right)$. For the moment, let us suppose that we have "magically" obtained the values $\left\langle x, r_{1}\right\rangle, \ldots,\left\langle x, r_{k}\right\rangle$. Then define $H^{\prime}(r)$ as the majority value of:

$$
\begin{equation*}
H\left(r+r_{j}\right)-\left\langle x, r_{j}\right\rangle \quad j=1,2, \ldots, k \tag{5}
\end{equation*}
$$

For each j, the above expression equals $\langle x, r\rangle$ with probability at least $\frac{1}{2}+\epsilon$ (over the choices of r_{j}) and by choosing $k=O\left(1 / \epsilon^{2}\right)$ we can ensure that

$$
\begin{equation*}
\underset{r, r_{1}, \ldots, r_{k}}{\mathbb{P}}\left[H^{\prime}(r)=\langle x, r\rangle\right] \geq \frac{31}{32} . \tag{6}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\underset{r_{1}, \ldots, r_{k}}{\mathbb{P}}\left[\underset{r}{\mathbb{P}}\left[H^{\prime}(r)=\langle x, r\rangle\right] \geq \frac{7}{8}\right] \geq \frac{3}{4} \tag{7}
\end{equation*}
$$

Consider the following algorithm.
function GL-First-AtTEMPT
pick $r_{1}, \ldots, r_{k} \in\{0,1\}^{n}$ where $k=O\left(1 / \epsilon^{2}\right)$
for all $b_{1}, \ldots, b_{k} \in\{0,1\}$ do
define $H_{b_{1} \ldots b_{k}}^{\prime}(r)$ as majority of: $H\left(r+r_{j}\right)-b_{j}$
apply Algorithm GLW to $H_{b_{1} \ldots b_{t}}^{\prime}$
add result to list
end for
return list
end function
The idea behind this program is that we do not in fact know the values $\left\langle x, r_{j}\right\rangle$, but we can "guess" them by considering all choices for the bits b_{j}. If $H(r)$ agrees with $\langle x, r\rangle$ for at least a $1 / 2+\epsilon$ fraction of the $r s$, then there is a probability at least $3 / 4$ that in one of the iteration we invoke algorithm GLW with a simulated oracle that has agreement $7 / 8$ with $\langle x, r\rangle$. Therefore, the final list contains x with probability at least $3 / 4-1 / n>1 / 2$.
The obvious problem with this algorithm is that its running time is exponential in $k=O\left(1 / \epsilon^{2}\right)$ and the resulting list may also be exponentially larger than the $O\left(1 / \epsilon^{2}\right)$ bound promised by the Lemma.
To overcome these problems, consider the following similar algorithm.
function GL
pick $r_{1}, \ldots, r_{t} \in\{0,1\}^{n}$ where $t=\log O\left(1 / \epsilon^{2}\right)$
define $r_{S}:=\sum_{j \in S} r_{j}$ for each non-empty $S \subseteq\{1, \ldots, t\}$
for all $b_{1}, \ldots, b_{t} \in\{0,1\}$ do
define $b_{S}:=\sum_{j \in S} b_{j}$ for each non-empty $S \subseteq\{1, \ldots, t\}$
define $H_{b_{1} \ldots b_{t}}^{\prime}(r)$ as majority over non-empty $S \subseteq\{1, \ldots, t\}$ of $H\left(r+r_{S}\right)-b_{S}$
run Algorithm GLW with oracle $H_{b_{1} \ldots b_{t}}^{\prime}$
add result to list
end for
return list
end function
Let us now see why this algorithm works. First we define, for any nonempty $S \subseteq$ $\{1, \ldots, t\}, r_{S}=\sum_{j \in S} r_{j}$. Then, since $r_{1}, \ldots, r_{t} \in\{0,1\}^{n}$ are random, it follows that for any $S \neq T, r_{S}$ and r_{T} are independent and uniformly distributed. Now consider an x such that $\langle x, r\rangle$ and $H(r)$ agree on a $\frac{1}{2}+\epsilon$ fraction of the values of r. Then for the choice of $\left\{b_{j}\right\}$ where $b_{j}=\left\langle x, r_{j}\right\rangle$ for all j, we have that

$$
b_{S}=\left\langle x, r_{S}\right\rangle
$$

for every non-empty S. In such a case, for every S and every r, there is a probability at least $\frac{1}{2}+\epsilon$, over the choices of the r_{j} that

$$
H\left(r+r_{S}\right)-b_{S}=\langle x, r\rangle,
$$

and these events are pair-wise independent. Note the following simple lemma.
Lemma 4 Let R_{1}, \ldots, R_{k} be a set of pairwise independent $0-1$ random variables, each of which is 1 with probability at least $\frac{1}{2}+\epsilon$. Then $\mathbb{P}\left[\sum_{i} R_{i} \geq k / 2\right] \geq 1-\frac{1}{4 \epsilon^{2} k}$.

Proof: Let $R=R_{1}+\cdots+R_{t}$. The variance of a $0 / 1$ random variable is at most $1 / 4$, and, because of pairwise independence, $\operatorname{Var}[R]=\operatorname{Var}\left[R_{1}+\ldots+R_{k}\right]=\sum_{i} \operatorname{Var}\left[R_{k}\right] \leq$ $k / 4$.

We then have

$$
\mathbb{P}[R \leq k / 2] \leq \mathbb{P}[|R-\mathbb{E}[R]| \geq \epsilon k] \leq \frac{\operatorname{Var}[R]}{\epsilon^{2} k^{2}} \leq \frac{1}{4 \epsilon^{2} k}
$$

Lemma 4 allows us to upper-bound the probability that the majority operation used to compute H^{\prime} gives the wrong answer. Combining this with our earlier observation that the $\left\{r_{S}\right\}$ are pairwise independent, we see that choosing $t=\log \left(128 / \epsilon^{2}\right)$ suffices to ensure that $H_{b_{1} \ldots b_{t}}^{\prime}(r)$ and $\langle x, r\rangle$ have agreement at least $7 / 8$ with probability at least $3 / 4$. Thus we can use Algorithm $A_{\frac{7}{8}}$ to obtain x with high probability. Choosing t as above ensures that the list generated is of length at most $2^{t}=128 / \epsilon^{2}$ and the running time is then $O\left(n^{2} \epsilon^{-4} \log n\right)$ with $O\left(n \epsilon^{-4} \log n\right)$ oracle accesses, due to the $O\left(1 / \epsilon^{2}\right)$ iterations of Algorithm GLW, that makes $O(n \log n)$ oracle accesses, and to the fact that one evaluation of $H^{\prime}()$ requires $O\left(1 / \epsilon^{2}\right)$ evaluations of $H()$.

