Notes for Lecture 13

Scribed by Siu-On Chan, posted March 12, 2009

Summary

Today we complete the proof that it is possible to construct a pseudorandom generator from a one-way permutation.

1 Pseudorandom Generators from One-Way Permutations

Last time we proved the Goldreich-Levin theorem.

Theorem 1 (Goldreich and Levin) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be $a(t, \epsilon)$-one way permutation computable in time $r \leq t$. Then the predicate $x, r \mapsto\langle x, r\rangle$ is $\left(\Omega\left(t \cdot \epsilon^{2}\right.\right.$. $\left.n^{-O(1)}, 3 \epsilon\right)$ hard core for the permutation $x, r \mapsto f(x), r$.

A way to look at this result is the following: suppose f is $\left(2^{\Omega(n)}, 2^{-\Omega(n)}\right)$ one way and computable in $n^{O(1)}$ time. Then $\langle x, r\rangle$ is a $\left(2^{\Omega(n)}, 2^{-\Omega(n)}\right)$ hard-core predicate for the permutation $x, r \rightarrow f(x), r$.
From now on, we shall assume that we have a one-way permutation $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$ and a predicate $P:\{0,1\}^{n} \rightarrow\{0,1\}$ that is (t, ϵ) hard core for f.
This already gives us a pseudorandom generator with one-bit expansion.
Theorem 2 (Yao) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a permutation, and suppose P : $\{0,1\}^{n} \rightarrow\{0,1\}$ is (t, ϵ)-hard core for f. Then the mapping

$$
x \mapsto P(x), f(x)
$$

is $(t-O(1), \epsilon)$-pseudorandom generator mapping n bits into $n+1$ bits.
Note that f is required to be a permutation rather than just a function. If f is merely a function, it may always begin with 0 and the overall mapping would not be pseudorandom.

For the special case where the predicate P is given by Goldreich-Levin, the mapping would be

$$
x \mapsto\langle x, r\rangle, f(x), r
$$

Proof: Suppose the mapping is not $(t-2, \epsilon)$-pseudorandom. There is an algorithm D of complexity $\leq t-2$ such that

$$
\begin{equation*}
\left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}[D(P(x) f(x))=1]-\operatorname{Pr}_{\substack{b \sim\{0,1\} \\ x \sim\{0,1\}^{n}}}[D(b f(x))=1]\right|>\epsilon \tag{1}
\end{equation*}
$$

where we have used the fact that since f is permutation, $f(x)$ would be a uniformly random element in $\{0,1\}^{n}$ when x is such.
We will first remove the absolute sign in (1). The new inequality holds for either D or $1-D$ (i.e. the complement of D), and they both have complexity at most $t-1$.
Now define an algorithm A as follows.
On input $y=f(x)$, pick a random bit $r \sim\{0,1\}$. If $D(r, y)=1$, then output r, otherwise output $1-r$.
Algorithm A has complexity at most t. We claim that

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}[A(f(x))=P(x)]>\frac{1}{2}+\epsilon
$$

so $P(\cdot)$ is not (t, ϵ)-hard core.
To make explicit the dependence of A on r, we will denote by $A_{r}(f(x))$ the fact that A picks r as its random bit.
To prove the claim, we expand

$$
\begin{aligned}
& \operatorname{Pr}_{x, r}\left[A_{r}(f(x))=P(x)\right] \\
& =\operatorname{Pr}_{x, r}\left[A_{r}(f(x))=P(x) \mid r=P(x)\right] \operatorname{Pr}[r=P(x)]+ \\
& \quad \operatorname{Pr}_{x, r}\left[A_{r}(f(x))=P(x) \mid r \neq P(x)\right] \operatorname{Pr}[r \neq P(x)]
\end{aligned}
$$

Note that $\operatorname{Pr}[r=P(x)]=\operatorname{Pr}[r \neq P(x)]=1 / 2$ no matter what $P(x)$ is. The above probability thus becomes

$$
\begin{equation*}
\frac{1}{2} \underset{x, r}{\operatorname{Pr}}[D(r f(x))=1 \mid r=P(x)]+\frac{1}{2} \underset{x, r}{\operatorname{Pr}}[D(r f(x))=0 \mid r \neq P(x)] \tag{2}
\end{equation*}
$$

The second term is just $\frac{1}{2}-\frac{1}{2} \operatorname{Pr}_{x, r}[D(r f(x))=1 \mid r \neq P(x)]$. Now we add to and subtract from (2) the quantity $\frac{1}{2} \operatorname{Pr}_{x, r}[D(r f(x))=1 \mid r=P(x)]$, getting

$$
\begin{aligned}
& \frac{1}{2}+\operatorname{Pr}_{x, r}[D(r f(x))=1 \mid r=P(x)]- \\
& \left(\frac{1}{2} \operatorname{Pr}[D(r f(x))=1 \mid r=P(x)]+\right. \\
& \left.\frac{1}{2} \operatorname{Pr}[D(r f(x))=1 \mid r \neq P(x)]\right)
\end{aligned}
$$

The expression in the bracket is $\operatorname{Pr}[D(r f(x))=1]$, and by our assumption on D, the whole expression is more than $\frac{1}{2}+\epsilon$, as claimed.

The main idea of the proof is to convert something that distinguishes (i.e. D) to something that outputs (i.e. A). D helps us distinguish good answers and bad answers.

We will amplify the expansion of the generator by the following idea: from an n-bit input, we run the generator to obtain $n+1$ pseudorandom bits. We output one of those $n+1$ bits and feed the other n back into the generator, and so on. Specialized to the above construction, and repeated k times the mapping becomes

$$
\begin{equation*}
G_{k}(x):=P(x), P(f(x)), P\left(f(f(x)), \ldots, P\left(f^{(k-1)}(x), f^{(k)}(x)\right.\right. \tag{3}
\end{equation*}
$$

This corresponds to the following diagram where all output bits lie at the bottom.

Theorem 3 (Blum-Micali) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a permutation, and suppose $P:\{0,1\}^{n} \rightarrow\{0,1\}$ is (t, ϵ)-hard core for f and that f, P are computable with complexity r.

Then $G_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+k}$ as defined in (3) is $(t-O(r k), \epsilon k)$-pseudorandom.
Proof: Suppose G_{k} is not $(t-O(r k), \epsilon k)$-pseudorandom. Then there is an algorithm D of complexity at most $t-O(r k)$ such that

$$
\left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[D\left(G_{k}(x)\right)=1\right]-\operatorname{Pr}_{z \sim\{0,1\}^{n+k}}[D(z)=1]\right|>\epsilon k
$$

We will then use the hybrid argument. We will define a sequence of distributions H_{0}, \ldots, H_{k}, the first is G_{k} 's output, the last is uniformly random bits, and every two adjacent ones differ only in one invocation of G.

More specifically, define H_{i} to be the distribution where we intercept the output of the first i copies of G 's, replace them with random bits, and run the rest of G_{k} as usual (see the above figure in which blue lines represent intercepted outputs). Then H_{0} is just the distribution of the output of G_{k}, and H_{k} is the uniform distribution, as desired. Now

$$
\begin{aligned}
\epsilon k & <\left|\operatorname{Pr}_{z \sim H_{0}}[D(z)=1]-\operatorname{Pr}_{z \sim H_{k}}[D(z)=1]\right| \\
& =\left|\sum_{i=0}^{k-1}\left(\operatorname{Pr}_{z \sim H_{i}}[D(z)=1]-\operatorname{Pr}_{z \sim H_{i+1}}[D(z)=1]\right)\right|
\end{aligned}
$$

So there is an i such that

$$
\left|\operatorname{Pr}_{z \sim H_{i}}[D(z)=1]-\operatorname{Pr}_{z \sim H_{i+1}}[D(z)=1]\right|>\epsilon
$$

In both H_{i} and H_{i+1}, the first i bits r_{1}, \ldots, r_{i} are random.
We now define a new algorithm D^{\prime} that takes as input b, y and has output distribution H_{i} or H_{i+1} in two special cases: if b, y are drawn from $P(x), f(x)$, then D^{\prime} has output distribution H_{i}; if b, y are drawn from (random bit), $f(x)$, then D^{\prime} has output distribution H_{i+1}. In other words, if b, y are $P(x), f(x), D^{\prime}$ should output

$$
r_{1}, \ldots, r_{i}, P(x), P(f(x)), \ldots, P\left(f^{(k-i-1)}(x)\right), f^{(k-i)}(x)
$$

If b, y are (random bit), $f(x), D^{\prime}$ should output

$$
r_{1}, \ldots, r_{i}, r_{i+1}, P(f(x)), \ldots, P\left(f^{(k-i-1)}(x)\right), f^{(k-i)}(x)
$$

This suggests that D^{\prime} on input b, y should pick random bits r_{1}, \ldots, r_{i} and output $r_{1}, \ldots, r_{i}, b, P(y), \ldots, P\left(f^{(k-i-2)}(y)\right), f^{(k-i-1)}(y)$.
We have

$$
\begin{aligned}
& \left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[D^{\prime}(P(x) f(x))=1\right]-\operatorname{Pr}_{z \sim\{0,1\}^{n+1}}\left[D^{\prime}(z)=1\right]\right| \\
& =\left|\operatorname{Pr}_{x \sim H_{i}}\left[D^{\prime}(x)=1\right]-\operatorname{Pr}_{x \sim H_{i+1}}\left[D^{\prime}(x)=1\right]\right| \\
& >\epsilon
\end{aligned}
$$

and $P(\cdot)$ is not (t, ϵ)-hard core.
Thinking about the following problem is a good preparation for the proof the main result of the next lecture.

Exercise 1 (Tree Composition of Generators) Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be a (t, ϵ) pseudorandom generator computable in time r, let $G_{0}(x)$ be the first n bits of the output of $G(x)$, and let $G_{1}(x)$ be the last n bits of the output of $G(x)$.
Define $G^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{4 n}$ as

$$
G^{\prime}(x)=G\left(G_{0}(x)\right), G\left(G_{1}(x)\right)
$$

Prove that G^{\prime} is a $(t-O(r), 3 \epsilon)$ pseudorandom generator.

