
U.C. Berkeley — CS276: Cryptography Handout N13
Luca Trevisan March 3, 2009

Notes for Lecture 13

Scribed by Siu-On Chan, posted March 12, 2009

Summary

Today we complete the proof that it is possible to construct a pseudorandom generator
from a one-way permutation.

1 Pseudorandom Generators from One-Way Per-

mutations

Last time we proved the Goldreich-Levin theorem.

Theorem 1 (Goldreich and Levin) Let f : {0, 1}n → {0, 1}n be a (t, ε)-one way
permutation computable in time r ≤ t. Then the predicate x, r 7→ 〈x, r〉 is (Ω(t · ε2 ·
n−O(1), 3ε) hard core for the permutation x, r 7→ f(x), r.

A way to look at this result is the following: suppose f is (2Ω(n), 2−Ω(n)) one way and
computable in nO(1) time. Then 〈x, r〉 is a (2Ω(n), 2−Ω(n)) hard-core predicate for the
permutation x, r → f(x), r.

From now on, we shall assume that we have a one-way permutation f : {0, 1}n →
{0, 1}n and a predicate P : {0, 1}n → {0, 1} that is (t, ε) hard core for f .

This already gives us a pseudorandom generator with one-bit expansion.

Theorem 2 (Yao) Let f : {0, 1}n → {0, 1}n be a permutation, and suppose P :
{0, 1}n → {0, 1} is (t, ε)-hard core for f . Then the mapping

x 7→ P (x), f(x)

is (t−O(1), ε)-pseudorandom generator mapping n bits into n+ 1 bits.

Note that f is required to be a permutation rather than just a function. If f is
merely a function, it may always begin with 0 and the overall mapping would not be
pseudorandom.

1



For the special case where the predicate P is given by Goldreich-Levin, the mapping
would be

x 7→ 〈x, r〉, f(x), r

Proof: Suppose the mapping is not (t− 2, ε)-pseudorandom. There is an algorithm
D of complexity ≤ t− 2 such that∣∣∣∣∣∣∣ Pr

x∼{0,1}n
[D(P (x)f(x)) = 1]− Pr

b∼{0,1}
x∼{0,1}n

[D(bf(x)) = 1]

∣∣∣∣∣∣∣ > ε (1)

where we have used the fact that since f is permutation, f(x) would be a uniformly
random element in {0, 1}n when x is such.

We will first remove the absolute sign in (1). The new inequality holds for either D
or 1−D (i.e. the complement of D), and they both have complexity at most t− 1.

Now define an algorithm A as follows.

On input y = f(x), pick a random bit r ∼ {0, 1}. If D(r, y) = 1, then output r,
otherwise output 1− r.
Algorithm A has complexity at most t. We claim that

Pr
x∼{0,1}n

[A(f(x)) = P (x)] >
1

2
+ ε

so P (·) is not (t, ε)-hard core.

To make explicit the dependence of A on r, we will denote by Ar(f(x)) the fact that
A picks r as its random bit.

To prove the claim, we expand

Pr
x,r

[Ar(f(x)) = P (x)]

= Pr
x,r

[Ar(f(x)) = P (x) | r = P (x)] Pr[r = P (x)]+

Pr
x,r

[Ar(f(x)) = P (x) | r 6= P (x)] Pr[r 6= P (x)]

2



Note that Pr[r = P (x)] = Pr[r 6= P (x)] = 1/2 no matter what P (x) is. The above
probability thus becomes

1

2
Pr
x,r

[D(rf(x)) = 1 | r = P (x)] +
1

2
Pr
x,r

[D(rf(x)) = 0 | r 6= P (x)] (2)

The second term is just 1
2
− 1

2
Prx,r[D(rf(x)) = 1 | r 6= P (x)]. Now we add to and

subtract from (2) the quantity 1
2

Prx,r[D(rf(x)) = 1 | r = P (x)], getting

1

2
+ Pr

x,r
[D(rf(x)) = 1 | r = P (x)]−(
1

2
Pr[D(rf(x)) = 1 | r = P (x)]+

1

2
Pr[D(rf(x)) = 1 | r 6= P (x)]

)
The expression in the bracket is Pr[D(rf(x)) = 1], and by our assumption on D, the
whole expression is more than 1

2
+ ε, as claimed.

�

The main idea of the proof is to convert something that distinguishes (i.e. D) to
something that outputs (i.e. A). D helps us distinguish good answers and bad
answers.

We will amplify the expansion of the generator by the following idea: from an n-bit
input, we run the generator to obtain n + 1 pseudorandom bits. We output one of
those n+ 1 bits and feed the other n back into the generator, and so on. Specialized
to the above construction, and repeated k times the mapping becomes

Gk(x) := P (x), P (f(x)), P (f(f(x)), . . . , P (f (k−1)(x), f (k)(x) (3)

This corresponds to the following diagram where all output bits lie at the bottom.

G G G G . . . G

f(x)

P (x)

f(f(x))

P (f(x))

f(f(f(x)))

P (f(f(x)))

f (k−1)(x)

P (f (k−1)(x)), f (k)(x)

Theorem 3 (Blum-Micali) Let f : {0, 1}n → {0, 1}n be a permutation, and sup-
pose P : {0, 1}n → {0, 1} is (t, ε)-hard core for f and that f, P are computable with
complexity r.

3



Then Gk : {0, 1}n → {0, 1}n+k as defined in (3) is (t−O(rk), εk)-pseudorandom.

Proof: Suppose Gk is not (t−O(rk), εk)-pseudorandom. Then there is an algorithm
D of complexity at most t−O(rk) such that∣∣∣∣ Pr

x∼{0,1}n
[D(Gk(x)) = 1]− Pr

z∼{0,1}n+k
[D(z) = 1]

∣∣∣∣ > εk

We will then use the hybrid argument. We will define a sequence of distributions
H0, . . . , Hk, the first is Gk’s output, the last is uniformly random bits, and every two
adjacent ones differ only in one invocation of G.

G G G G . . .

r1 r2 ri

More specifically, define Hi to be the distribution where we intercept the output of
the first i copies of G’s, replace them with random bits, and run the rest of Gk as
usual (see the above figure in which blue lines represent intercepted outputs). Then
H0 is just the distribution of the output of Gk, and Hk is the uniform distribution,
as desired. Now

εk <

∣∣∣∣ Pr
z∼H0

[D(z) = 1]− Pr
z∼Hk

[D(z) = 1]

∣∣∣∣
=

∣∣∣∣∣
k−1∑
i=0

(
Pr

z∼Hi

[D(z) = 1]− Pr
z∼Hi+1

[D(z) = 1]

)∣∣∣∣∣
So there is an i such that∣∣∣∣ Pr

z∼Hi

[D(z) = 1]− Pr
z∼Hi+1

[D(z) = 1]

∣∣∣∣ > ε

In both Hi and Hi+1, the first i bits r1, . . . , ri are random.

We now define a new algorithm D′ that takes as input b, y and has output distribution
Hi or Hi+1 in two special cases: if b, y are drawn from P (x), f(x), then D′ has
output distribution Hi; if b, y are drawn from (random bit),f(x), then D′ has output
distribution Hi+1. In other words, if b, y are P (x), f(x), D′ should output

r1, . . . , ri, P (x), P (f(x)), . . . , P (f (k−i−1)(x)), f (k−i)(x)

4



If b, y are (random bit),f(x), D′ should output

r1, . . . , ri, ri+1, P (f(x)), . . . , P (f (k−i−1)(x)), f (k−i)(x)

This suggests that D′ on input b, y should pick random bits r1, . . . , ri and output
r1, . . . , ri, b, P (y), . . . , P (f (k−i−2)(y)), f (k−i−1)(y).

We have ∣∣∣∣ Pr
x∼{0,1}n

[D′(P (x)f(x)) = 1]− Pr
z∼{0,1}n+1

[D′(z) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
x∼Hi

[D′(x) = 1]− Pr
x∼Hi+1

[D′(x) = 1]

∣∣∣∣
> ε

and P (·) is not (t, ε)-hard core. �

Thinking about the following problem is a good preparation for the proof the main
result of the next lecture.

Exercise 1 (Tree Composition of Generators) Let G : {0, 1}n → {0, 1}2n be a
(t, ε) pseudorandom generator computable in time r, let G0(x) be the first n bits of
the output of G(x), and let G1(x) be the last n bits of the output of G(x).

Define G′ : {0, 1}n → {0, 1}4n as

G′(x) = G(G0(x)), G(G1(x))

Prove that G′ is a (t−O(r), 3ε) pseudorandom generator.

5


	Pseudorandom Generators from One-Way Permutations

