
U.C. Berkeley — CS276: Cryptography Handout N14
Luca Trevisan March 5, 2009

Notes for Lecture 14

Scribed by Madhur Tulsiani, posted March 20, 2009

Summary

Today we show how to construct a pseudorandom function from a pseudorandom
generator.

1 Pseudorandom generators evaluated on indepen-

dent seeds

We first prove a simple lemma which we will need. This lemma simply says that
if G is a pseudorandom generator with output length m, then if we evaluate G on
k independent seeds the resulting function is still a pseudorandom generator with
output length km.

Lemma 1 (Generator Evaluated on Independent Seeds) Let G : {0, 1}n →
{0, 1}m be a (t, ε) pseudorandom generator running in time tg. Fix a parameter k,
and define Gk : {0, 1}kn → {0, 1}km as

Gk(x1, . . . , xk) := G(x1), G(x2), . . . , G(xk)

Then Gk is a (t−O(km+ ktg), kε) pseudorandom generator.

Proof: We will show that if for some (t, ε), Gk is not a (t, ε) psedorandom generator,
then G cannot be a (t+O(km+ ktg), ε/k) pseudorandom generator.

The proof is by a hybrid argument. If Gk is not a (t, ε) pseudorandom generator, then
there exists an algorithm D of complexity at most t, which distinguishes the output
of Gk on a random seed, from a truly random string of km bits i.e.∣∣∣∣ P

x1,...,xk

[D(G(x1), . . . , G(xk)) = 1]− P
r1,...,rk

[D(r1, . . . , rk) = 1]

∣∣∣∣ > ε

We can then define the hybrid distributions H0, . . . , Hk, where in Hi we relplace the
first i outputs of the pseudorandom generator G by truly random strings.

Hi = (r1, . . . , ri, G(xi+1), . . . , G(xn))

1



As before, the above statement which says |Pz∼H0 [D(z) = 1]− Pz∼Hk
[D(z) = 1]| > ε

would imply that there exists an i between 0 and k − 1 such that∣∣∣∣ P
z∼Hi

[D(z) = 1]− P
z∼Hi+1

[D(z) = 1]

∣∣∣∣ > ε/k

We can now define an algorithm D′ which violates the pseudorandom property of the
generator G. Given an input y ∈ {0, 1}m, D′ generates random strings r1, . . . , ri ∈
{0, 1}m, xi+2, . . . , xk ∈ {0, 1}n, and outputs D(r1, . . . , ri, y, G(xi+2), . . . , G(xk)). It
then follows that

P
x∼{0,1}n

[D′(G(x)) = 1] = P
z∼Hi

[D(z) = 1] and P
r∼{0,1}m

[D′(r) = 1] = P
z∼Hi+1

[D(z) = 1]

Hence, D′ distinguishes the output ofG on a random seed x from a truly random string
r, with probability at least ε/k. Also, the complexity of D′ is at most t + O(km) +
O(ktg), where the O(km) term corresponds to generating the random strings and the
O(ktg) terms corresponds to evaluating G on at most k random seeds. �

2 Construction of Pseudorandom Functions

We now describe the construction of a pseudorandom function from a pseudorandom
generator. Let G : {0, 1}n → {0, 1}2n be a length-doubling pseudorandom generator.
Define G0 : {0, 1}n → {0, 1}n such that G0(x) equals the first n bits of G(x), and
define G1 : {0, 1}n → {0, 1}n such that G1(x) equals the last n bits of G(x).

The the GGM pseudorandom function based on G is defined as follows: for key
K ∈ {0, 1}n and input x ∈ {0, 1}n:

FK(x) := Gxn(Gxn−1(· · ·Gx2(Gx1(K)) · · · )) (1)

The evaluation of the function F can be visualized by considering a binary tree of
depth n, with a copy of the generator G at each node. The root receives the input K
and passes the outputs G0(K) and G1(K) to its two children. Each node of the tree,
receiving an input z, produces the outputs G0(z) and G1(z) which are passed to its
children if its not a leaf. The input x to the function FK , then selects a path in this
tree from the root to a leaf, and produces the output given by the leaf.

2



G

K

G (K)G (K)0 1

We will prove that if G : {0, 1}n → {0, 1}2n is a (t, ε) pseudorandom generator running
in time tg, then F is a (t/O(n · tg), ε · nt) secure pseudorandom function.

2.1 Considering a tree of small depth

We will first consider a slightly simpler situation which illustrates the main idea. We
prove that if G is (t, ε) pseudorandom and runs in time tg, then the concatenated
output of all the leaves in a tree with l levels, is (t−O(2l · tg), l2l · ε) pseudorandom.
The result is only meaninful when l is much smaller than n.

Theorem 2 Suppose G : {0, 1}n → {0, 1}2n is a (t, ε) pseudorandom generator and
G is computable in time tg. Fix a constant l and define FK : {0, 1}l → {0, 1}n as

FK(y) := Gyl
(Gyl−1

(· · ·Gy2(Gy1(K)) · · · )) Then G : {0, 1}n → {0, 1}2l·n defined as

G(K) := (FK(0l), FK(0l−11), . . . , FK(1l))

is a (t−O(2l · tg), l · 2l · ε) pseudorandom generator.

Proof: The proof is again by a hybrid argument. The hybrids we consider are
easier to describe in terms of the tree with nodes as copies of G. We take Hi to be
the distribution of outputs at the leaves, when the input to the nodes at depth i is
replaced by truly random bits, ignoring the nodes at depth i−1. Hence, H0 is simply
distributed as G(K) for a random K i.e. only the input to the root is random. Also,
in Hl we replace the outputs at depth l − 1 by truly random strings. Hence, Hl is
simply distributed as a random string of length n · 2l. The figure below shows the
hybrids for the case l = 2, with red color indicating true randomness.

H H H
0 1 2

3



We will prove that G is not a (t, ε) secure pseudorandom generator, then G is not
(t+O(2l ·tg), ε/(l ·2l)) secure. If we assume that there is an algorithm D of complexity
t such that ∣∣∣∣∣ P

x∼{0,1}n
[D(G(x)) = 1]− P

r∼{0,1}2l·n
[D(r) = 1]

∣∣∣∣∣ > ε

then we get that there is an i such that
∣∣Pz∼Hi

[D(z) = 1]− Pz∼Hi+1
[D(z) = 1]

∣∣ > ε/l.

We now consider again the difference between Hi and Hi+1. In Hi the 2i ·n bits which
are the inputs to the nodes at depth i are replaced by random bits. These are then
used to generate 2i+1 · n bits which serve as inputs to nodes at depth i+ 1. In Hi+1,
the inputs to nodes at depth i+ 1 are random.

Let Gi+1 : {0, 1}2i+1·n → {0, 1}2l·n denote the function which given 2i+1 ·n bits, treats
them as inputs to the nodes at depth i+ 1 and evaluates the output at the leaves in
the tree for G. If r1, . . . , r2i ∼ {0, 1}2n, then Gi+1(r1, . . . , r2i) is distributed as Hi+1.
Also, if x1, . . . , x2i ∼ {0, 1}n, then Gi+1(G(x1), . . . , G(x2i)) is distributed as Hi.

Hence, D can be used to create a distinguisher D′ which distinguishes G evaluated
on 2i independent seeds, from 2i random strings of length 2n. In particular, for
z ∈ {0, 1}2i+1·n, we take D′(z) = D(Gi+1(z)). This gives∣∣∣∣ P

x1,...,x2i

[D′(G(x1), . . . , G(x2i)) = 1]− P
r1,...,r2i

[D′(r1, . . . , r2i) = 1]

∣∣∣∣ > ε/l

Hence,D′ distinguishes G2i
(x1, . . . , x2i) = (G(x1), . . . , G(x2i)) from a random string.

Also, G′ has complexity t+O(2l · tg). However, by Lemma 1, if G2i
is not (t+O(2l ·

tg), ε/l) secure then G is not (t+O(2l · tg + 2i · n), ε/(l · 2i)) secure. Since i ≤ l, this
completes the proof. �

2.2 Proving the security of the GGM construction

Recall that the GGM function is defined as

FK(x) := Gxn(Gxn−1(· · ·Gx2(Gx1(K)) · · · ))

We will prove that

Theorem 3 If G : {0, 1}n → {0, 1}2n is a (t, ε) pseudorandom generator and G is
computable in time tg, then F is a (t/O(ntg), ε · n · t) secure pseudorandom function.

Proof: As before, we assume that F is not a (t, ε) secure pseudorandom function, and
will show that this implies G is not a (t · O(ntg), ε/(n · t)) pseudorandom generator.
The assumption that F is not (t, ε) secure, gives that there is an algorithm A of

4



complexity at most t which distinguishes FK on a random seed K from a random
function R, i.e. ∣∣∣∣P

K

[
AFK(·) = 1

]
− P

R

[
AR(·) = 1

]∣∣∣∣ > ε

We consider hybrids H0, . . . , Hn as in the proof of Theorem 2. H0 is the distribution
of FK for K ∼ {0, 1}n and Hn is the uniform distribution over all functions from
{0, 1}n to {0, 1}n. As before, there exists i such that∣∣∣∣ P

h∼Hi

[
Ah(·) = 1

]
− P

h∼Hi+1

[
Ah(·) = 1

]∣∣∣∣ > ε/n

However, now we can no longer use A to construct a distinguisher for G2i
as in

Theorem 2 since i may now be as large as n. The important observation is that since
A has complexity t, it can make at most t queries to the function it is given as an
oracle. Since the (at most) t queries made by A will be paths in the tree from the root
to the leaves, they can contain at most t nodes at depth i+ 1. Hence, to simulate the
behavior of A, we only need to generate the value of a function distributed according
to Hi or Hi+1 at t inputs.

We will use this to contruct an algorithm D which distinguishes the output of Gt on
t independent seeds from t random strings of length 2n. D takes as input a string of
length 2tn, which we treat as t pairs (z1,0, z1,1), . . . , (zt,0, zt,1) with each zi,j being of
length n. When queried on an input x ∈ {0, 1}n, D will pick a pair (zk,0, zk,1) accord-
ing to the first i bits of x (i.e. choose the randomness for the node at depth i which
lies on the path), and then choose zk,xi+1

. In particular, D((z1,0, z1,1), . . . , (zt,0, zt,1))
works as below:

1. Start with counter k = 0.

2. Simulate A. When given a query x

• Check if a pair P (x1, . . . , xi) has already been chosen from the first k pairs.

• If not, set P (x1, . . . , xi+1) = k + 1 and set k = k + 1.

• Answer the query made by A as Gxn(· · ·Gi+2(zP (x1,...,xi+1),xi+1
) · · · ).

3. Return the final output given by A.

Then, if all pairs are random strings r1, . . . , rt of length 2n, the answers received by
A are as given by a oracle function distributed according to Hi+1. Hence,

P
r1,...,rt

[D(r1, . . . , rt) = 1] = P
h∼Hi+1

[
Ah(·) = 1

]

5



Similarly, if the t pairs are outputs of the pseudorandom generator G on independent
seeds x1, . . . , xt ∈ {0, 1}n, then the view of A is the same as in the case with an oracle
function distributed according to Hi. This gives

P
x1,...,xt

[D(G(x1), . . . , G(xt)) = 1] = P
h∼Hi

[
Ah(·) = 1

]
Hence, D distinguishes the output of Gt from a random string with probability ε/n.
Also, it runs in time O(t·n·tg). Then Lemma 1 gives that G is not (O(t·n·tg), ε/(n·t))
secure. �

6


	Pseudorandom generators evaluated on independent seeds
	Construction of Pseudorandom Functions
	Considering a tree of small depth
	Proving the security of the GGM construction


