Notes for Lecture 16

Scribed by Anupam Prakash, posted March 16, 2009

Summary

Today we finish the analysis of a construction of a pseudorandom permutation (block cipher) given a pseudorandom function.

1 The Luby-Rackoff Construction

Recall that if $F:\{0,1\}^{m} \rightarrow\{0,1\}^{m}$ is a function, then we define the Feistel permutation $D_{F}:\{0,1\}^{2 m} \rightarrow\{0,1\}^{2 m}$ associated with F as

$$
\begin{equation*}
D_{F}(x, y):=y, x \oplus F(y) \tag{1}
\end{equation*}
$$

Let $F:\{0,1\}^{k} \times\{0,1\}^{m} \rightarrow\{0,1\}^{m}$ be a pseudorandom function, we define the following function $P:\{0,1\}^{4 k} \times\{0,1\}^{2 m} \rightarrow\{0,1\}^{2 m}$: given a key $\bar{K}\left(K_{1}, \ldots, K_{4}\right)$ and an input x,

$$
\begin{equation*}
P_{\bar{K}}(x):=D_{F_{K_{4}}}\left(D_{F_{K_{3}}}\left(D_{F_{K_{2}}}\left(D_{F_{K_{1}}}(x)\right)\right)\right) \tag{2}
\end{equation*}
$$

If $\bar{F}=F_{1}, F_{2}, F_{3}, F_{4}$ are four functions, then $P_{\bar{F}}$ is the same as the above construction but using the functions F_{i} :

$$
\begin{equation*}
P_{\bar{F}}(x):=D_{F_{4}}\left(D_{F_{3}}\left(D_{F_{2}}\left(D_{F_{1}}(x)\right)\right)\right) \tag{3}
\end{equation*}
$$

If A is an oracle algorithm, we define as $S(A)$ the probabilistic process in which we run a simulation of A in which we reply to each query with a random answer.

2 Today's Proof

The proof of the following result is what was missing from yesterday's analysis.

Lemma 1 For every non-repeating algorithm A of complexity $\leq t$ we have

$$
\begin{gathered}
\left|\frac{\mathbb{P}}{\bar{F}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}()=1\right]-\mathbb{P}[S(A)=1]\right| \\
\leq \frac{t^{2}}{2 \cdot 2^{2 m}}+\frac{t^{2}}{2^{m}}
\end{gathered}
$$

Proof: The transcript of A 's computation consists of all the oracle queries made by A. The notation $(x, y, 0)$ represents a query to the π oracle at point x while $(x, y, 1)$ is a query made to the π^{-1} oracle at y. The set T consists of all valid transcripts for computations where the output of A is 1 while $T^{\prime} \subset T$ consists of transcripts in T consistent with π being a permutation.
We write the difference in the probability of A outputting 1 when given oracles $\left(P_{\bar{R}}, P_{\bar{R}}^{-1}\right)$ and when given a random oracle as in $S(A)$ as a sum over transcripts in T.

$$
\begin{gather*}
\left|\mathbb{P}_{\bar{F}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}()=1\right]-\mathbb{P}[S(A)=1]\right| \tag{4}\\
=\left|\sum_{\tau \in T}\left(\mathbb{P}_{\bar{F}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}() \leftarrow \tau\right]-\mathbb{P}[S(A) \leftarrow \tau]\right)\right|
\end{gather*}
$$

We split the sum over T into a sum over T^{\prime} and $T \backslash T^{\prime}$ and bound both the terms individually. We first handle the simpler case of the sum over $T \backslash T^{\prime}$.

$$
\begin{align*}
& \left|\sum_{\tau \in T \backslash T^{\prime}}\left(\frac{\mathbb{P}}{\bar{F}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}() \leftarrow \tau\right]-\mathbb{P}[S(A) \leftarrow \tau]\right)\right| \tag{5}\\
= & \left|\sum_{\tau \in T \backslash T^{\prime}}(\mathbb{P}[S(A) \leftarrow \tau])\right| \\
\leq & \frac{t^{2}}{2.2^{2 m}}
\end{align*}
$$

The first equality holds as a transcript obtained by running A using the oracle ($P_{\bar{R}}, P_{\bar{R}}^{-1}$) is always consistent with a permutation. The transcript generated by querying an oracle is inconsistent with a permutation iff. points x, y with $f(x)=f(y)$ are queried. $S(A)$ makes at most t queries to an oracle that answers every query with an independently chosen random string from $\{0,1\}^{2 m}$. The probability of having a repetition is at most $\left(\sum_{i=1}^{t-1} i\right) / 2^{2 m} \leq t^{2} / 2^{2 m+1}$.
Bounding the sum over transcripts in T^{\prime} will require looking into the workings of the construction. Fix a transcript $\tau \in T^{\prime}$ given by $\left(x_{i}, y_{i}, b_{i}\right), 1 \leq i \leq q$, with the number of queries $q \leq t$. Each x_{i} can be written as $\left(L_{i}^{0}, R_{i}^{0}\right)$ for strings L_{i}^{0}, R_{i}^{0} of length m corresponding to the left and right parts of x_{i}. The string x_{i} goes through 4 iterations of D using the function $F_{k}, 1 \leq k \leq 4$ for the k th iteration. The output of the construction after iteration $k, 0 \leq k \leq 4$ for input x_{i} is denoted by $\left(L_{i}^{k}, R_{i}^{k}\right)$.

Functions F_{1}, F_{4} are said to be good for the transcript τ if the multisets $\left\{R_{1}^{1}, R_{2}^{1}, \cdots, R_{q}^{1}\right\}$ and $\left\{L_{1}^{3}, L_{2}^{3}, \cdots, L_{q}^{3}\right\}$ do not contain any repetitions. We bound the probability of F_{1} being bad for τ by analyzing what happens when $R_{i}^{1}=R_{j}^{1}$ for some i, j :

$$
\begin{gather*}
R_{i}^{1}=L_{i}^{0} \oplus F_{1}\left(R_{i}^{0}\right) \\
R_{j}^{1}=L_{j}^{0} \oplus F_{1}\left(R_{j}^{0}\right) \\
0=L_{i}^{0} \oplus L_{j}^{0} \oplus F_{1}\left(R_{i}^{0}\right) \oplus F_{1}\left(R_{j}^{0}\right) \tag{6}
\end{gather*}
$$

The algorithm A does not repeat queries so we have $\left(L_{i}^{0}, R_{i}^{0}\right) \neq\left(L_{j}^{0}, R_{j}^{0}\right)$. We observe that $R_{i}^{0} \neq R_{j}^{0}$ as equality together with equation (6) above would yield $x_{i}=x_{j}$. This shows that equation (6) holds only if $F_{1}\left(R_{j}^{0}\right)=s \oplus F_{1}\left(R_{i}^{0}\right)$, for a fixed s and distinct strings R_{i}^{0} and R_{j}^{0}. This happens with probability $1 / 2^{m}$ as the function F_{1} takes values from $\{0,1\}^{m}$ independently and uniformly at random. Applying the union bound for all pairs i, j,

$$
\begin{equation*}
\operatorname{Pr}_{F_{1}}\left[\exists i, j \in[q], \quad R_{i}^{1}=R_{j}^{1}\right] \leq \frac{t^{2}}{2^{m+1}} \tag{7}
\end{equation*}
$$

We use a similar argument to bound the probability of F_{4} being bad. If $L_{i}^{3}=L_{j}^{3}$ for some i, j we would have:

$$
\begin{gather*}
L_{i}^{3}=R_{i}^{4} \oplus F_{4}\left(L_{i}^{4}\right) \\
L_{j}^{3}=R_{j}^{4} \oplus F_{4}\left(L_{j}^{4}\right) \\
0=R_{i}^{4} \oplus R_{j}^{4} \oplus F_{4}\left(L_{i}^{4}\right) \oplus F_{4}\left(L_{j}^{4}\right) \tag{8}
\end{gather*}
$$

The algorithm A does not repeat queries so we have $\left(L_{i}^{4}, R_{i}^{4}\right) \neq\left(L_{j}^{4}, R_{j}^{4}\right)$. We observe that $L_{i}^{4} \neq L_{j}^{4}$ as equality together with equation (8) above would yield $y_{i}=y_{j}$. This shows that equation (8) holds only if $F_{4}\left(L_{j}^{4}\right)=s^{\prime} \oplus F_{4}\left(L_{i}^{4}\right)$, for a fixed string s^{\prime} and distinct strings L_{i}^{4} and L_{j}^{4}. This happens with probability $1 / 2^{m}$ as the function F_{4} takes values from $\{0,1\}^{m}$ independently and uniformly at random. Applying the union bound for all pairs i, j,

$$
\begin{equation*}
\operatorname{Pr}_{F_{4}}\left[\exists i, j \in[q], \quad L_{i}^{3}=L_{j}^{3}\right] \leq \frac{t^{2}}{2^{m+1}} \tag{9}
\end{equation*}
$$

Equations (7) and (9) together imply that

$$
\begin{equation*}
\operatorname{Pr}_{F_{1}, F_{4}}\left[F_{1}, F_{4} \text { not good for transcript } \tau\right] \leq \frac{t^{2}}{2^{m}} \tag{10}
\end{equation*}
$$

Continuing the analysis, we fix good functions F_{1}, F_{4} and the transcript τ. We will show that the probability of obtaining τ as a transcript in this case is the same as the
probability of obtaining τ for a run of $S(A)$. Let $\tau=\left(x_{i}, y_{i}, b_{i}\right), 1 \leq i \leq q \leq t$. We calculate the probability of obtaining y_{i} on query x_{i} over the choice of F_{2} and F_{3}.
The values of the input x_{i} are in bijection with pairs $\left(L_{i}^{1}, R_{i}^{1}\right)$ while the values of the output y_{i} are in bijection with pairs $\left(L_{i}^{3}, R_{i}^{3}\right)$, after fixing F_{1} and F_{4}. We have the relations (from (1)(3)):

$$
\begin{aligned}
L_{i}^{3}=R_{i}^{2} & =L_{i}^{1} \oplus F_{2}\left(R_{i}^{1}\right) \\
R_{i}^{3}=L_{i}^{2} \oplus F_{3}\left(R_{i}^{2}\right) & =R_{i}^{1} \oplus F_{3}\left(L_{i}^{3}\right)
\end{aligned}
$$

These relations imply that $\left(x_{i}, y_{i}\right)$ can be an input output pair if and only if we have $F_{2}\left(R_{i}^{1}\right), F_{3}\left(L_{i}^{3}\right)=\left(L_{i}^{3} \oplus L_{i}^{1}, R_{i}^{3} \oplus R_{i}^{1}\right)$. Since F_{2} and F_{3} are random functions with range $\{0,1\}^{m}$, the pair $\left(x_{i}, y_{i}\right)$ occurs with probability $2^{-2 m}$. The values R_{i}^{1} and $L_{i}^{3},(i \in[q])$ are distinct because the functions F_{1} and F_{4} are good. This makes the occurrence of $\left(x_{i}, y_{i}\right)$ independent from the occurrence of $\left(x_{j}, y_{j}\right)$ for $i \neq j$. We conclude that the probability of obtaining the transcript τ equals $2^{-2 m q}$.
The probability of obtaining transcript τ equals $2^{-2 m q}$ in the simulation $S(A)$ as every query is answered by an independent random number from $\{0,1\}^{2 m}$. Hence,

$$
\begin{align*}
& \quad\left|\sum_{\tau \in T^{\prime}}\left(\underset{\bar{F}}{\mathbb{P}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}() \leftarrow \tau\right]-\mathbb{P}[S(A) \leftarrow \tau]\right)\right| \tag{11}\\
& \leq \mid \sum_{\tau \in T^{\prime}} \underset{T_{2}, F_{3}}{\mathbb{P}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}() \leftarrow \tau \mid F_{1}, F_{4} \text { not good for } \tau\right] \mid \\
& \leq \frac{t^{2}}{2^{m}}\left|\sum_{\tau \in T^{\prime}} \underset{F_{2}, F_{3}}{\mathbb{P}}\left[A^{P_{\bar{R}}, P_{\bar{R}}^{-1}}() \leftarrow \tau\right]\right| \\
& \leq \frac{t^{2}}{2^{m}}
\end{align*}
$$

The statement of the lemma follows by adding equations (5) and (11) and using the triangle inequality.

This concludes the analysis of the Luby-Rackoff scheme for constructing pseudorandom permutations from a family of pseudorandom functions.

