Notes for Lecture 25

Scribed by Alexandra Constantin, posted May 4, 2009

Summary

Today we show that the graph isomorphism protocol we defined last time is indeed a zero-knowledge protocol. Then we discuss the quadratic residuosity problem modulo a composite, and define a protocol for proving quadratic residuosity. (We shall prove that the protocol is zero knowledge next time.)

1 The Graph Isomorphism Protocol

Last time we considered the following protocol for the graph isomorphism problem.

- Verifier's input: two graphs $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$;
- Prover's input: G_{1}, G_{2} and permutation π^{*} such that $\pi^{*}\left(G_{1}\right)=G_{2}$; the prover wants to convince the verifier that the graphs are isomorphic
- The prover picks a random permutation $\pi_{R}: V \rightarrow V$ and sends the graph $G:=\pi_{R}\left(G_{2}\right)$
- The verifier picks at random $b \in\{1,2\}$ and sends b to the prover
- The prover sends back π_{R} if $b=2$, and $\pi_{R}\left(\pi^{*}(\cdot)\right)$ otherwise
- The verifier cheks that the permutation π received at the previous round is such that $\pi\left(G_{b}\right)=G$, and accepts if so.

In order to prove that this protocol is zero knowledge, we have to show the existence of an efficient simulator.

Theorem 1 (Honest-Verifier Zero Knowledge) There exists an efficient simulator algorithm S^{*} such that, for every two isomorphic graphs G_{1}, G_{2}, and for every isomorphism π between them, the distributions of transcripts

$$
\begin{equation*}
P\left(\pi, G_{1}, G_{2}\right) \leftrightarrow \operatorname{Ver}\left(G_{1}, G_{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(G_{1}, G_{2}\right) \tag{2}
\end{equation*}
$$

are identical, where P is the prover algorithm and Ver is the verifier algorithm in the above protocol.

Proof:

Algorithm S on input G_{1}, G_{2} is described as follows:

- Input: graphs G_{1}, G_{2}
- pick uniformly at random $b \in\{1,2\}, \pi_{R}: V \rightarrow V$
- output the transcript:

1. prover sends $G=\pi_{R}\left(G_{b}\right)$
2. verifier sends b
3. prover sends π_{R}

At the first step, in the original protocol we have a random permutation of G_{2}, while in the simulation we have either a random permutation of G_{1} or a random permutation of G_{2}; a random permutation of G_{1}, however, is distributed as $\pi_{R}\left(\pi^{*}\left(G_{2}\right)\right)$, where π_{R} is uniformly distributed and π^{*} is fixed. This is the same as a random permutation of G_{2}, because composing a fixed permutation with a random permutation produces a random permutation.

The second step, both in the simulation and in the original protocol, is a random bit b, selected independently of the graph G sent in the first round. This is true in the simulation too, because the distribution of $G:=\pi_{R}\left(G_{b}\right)$ conditioned on $b=1$ is, by the above reasoning, identical to the distribution of G conditioned on $b=0$.

Finally, the third step is, both in the protocol and in the simulation, a distribution uniformly distributed among those establishing an isomorphism between G and G_{b}.

To establish that the protocol satisfies the general zero knowledge protocol, we need to be able to simulate cheating verifiers as well.

Theorem 2 (General Zero Knowledge) For every verifier algorithm V^{*} of complexity t there is a simulator algorithm S^{*} of expected complexity $\leq 2 t+O\left(n^{2}\right)$ such that, for every two isomorphic graphs G_{1}, G_{2}, and for every isomorphism π between them, the distributions of transcripts

$$
\begin{equation*}
P\left(\pi, G_{1}, G_{2}\right) \leftrightarrow V^{*}\left(G_{1}, G_{2}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{*}\left(G_{1}, G_{2}\right) \tag{4}
\end{equation*}
$$

are identical.

Proof:
Algorithm S^{*} on input G_{1}, G_{2} is described as follows:
Input G_{1}, G_{2}

1. pick uniformly at random $b \in\{1,2\}, \pi_{R}: V \rightarrow V$

- $G:=\pi_{R}\left(G_{b}\right)$
- let b^{\prime} be the second-round message of V^{*} given input G_{1}, G_{2}, first message G
- if $b \neq b^{\prime}$, abort the simulation and go to 1 .
- else output the transcript
- prover sends G
- verifier sends b
- prover sends π_{R}

As in the proof of Theorem 1, G has the same distribution in the protocol and in the simulation.
The important observation is that b^{\prime} depends only on G and on the input graphs, and hence is statistically independent of b. Hence, $\mathbb{P}\left[b=b^{\prime}\right]=\frac{1}{2}$ and so, on average, we only need two attempts to generate a transcript (taking overall average time at most $\left.2 t+O\left(n^{2}\right)\right)$. Finally, conditioned on outputting a transcript, G is distributed equally in the protocol and in the simulation, b is the answer of V^{*}, and π_{R} at the last round is uniformly distributed among permutations establishing an isomorphism between G and G_{b}.

2 The Quadratic Residuosity Problem

We review some basic facts about quadratic residuosity modulo a composite.
If $N=p \cdot q$ is the product of two distinct odd primes, and \mathbb{Z}_{N}^{*} is the set of all numbers in $\{1, \ldots, N-1\}$ having no common factor with N, then we have the following easy consequences of the Chinese remainder theorem:

- \mathbb{Z}_{N}^{*} has $(p-1) \cdot(q-1)$ elements, and is a group with respect to multiplication;

Proof:
Consider the mapping $x \rightarrow(x \bmod p, x \bmod q)$; it is a bijection because of the Chinese remainder theorem. (We will abuse notation and write $x=(x \bmod$ $p, x \bmod q)$.) The elements of \mathbb{Z}_{N}^{*} are precisely those which are mapped into pairs (a, b) such that $a \neq 0$ and $b \neq 0$, so there are precisely $(p-1) \cdot(q-1)$ elements in \mathbb{Z}_{N}^{*}.
If $x=\left(x_{p}, x_{q}\right), y=\left(y_{p}, y_{q}\right)$, and $z=\left(x_{p} \times y_{p} \bmod p, x_{q} \times y_{q} \bmod q\right)$, then $z=x \times y \bmod N$; note that if $x, y \in \mathbb{Z}_{N}^{*}$ then $x_{p}, y_{p}, x_{q}, y_{q}$ are all non-zero, and so $z \bmod p$ and $z \bmod q$ are both non-zero and $z \in \mathbb{Z}_{N}^{*}$.
If we consider any $x \in \mathbb{Z}_{N}^{*}$ and we denote $x^{\prime}=\left(x_{p}^{-1} \bmod p, x_{q}^{-1} \bmod q\right)$, then $x \cdot x^{\prime} \bmod N=\left(x_{p} x_{p}^{-1}, x_{q} x_{q}^{-1}\right)=(1,1)=1$.
Therefore, \mathbb{Z}_{N}^{*} is a group with respect to multiplication.

- If $r=x^{2} \bmod N$ is a quadratic residue, and is an element of \mathbb{Z}_{N}^{*}, then it has exactly 4 square roots in \mathbb{Z}_{N}^{*}
Proof:
If $r=x^{2} \bmod N$ is a quadratic residue, and is an element of \mathbb{Z}_{N}^{*}, then:
$r \equiv x^{2} \bmod p$
$r \equiv x^{2} \bmod q$.
Define $x_{p}=x \bmod p$ and $x_{q}=x \bmod q$ and consider the following four numbers:
$x=x_{1}=\left(x_{p}, x_{q}\right)$
$x_{2}=\left(-x_{p}, x_{q}\right)$
$x_{3}=\left(x_{p},-x_{q}\right)$
$x_{4}=\left(-x_{p},-x_{q}\right)$.
$x^{2} \equiv x_{1}^{2} \equiv x_{2}^{2} \equiv x_{3}^{2} \equiv x_{4}^{2} \equiv r \bmod N$.
Therefore, $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct square roots of r, so r has 4 square roots.
- Precisely $(p-1) \cdot(q-1) / 4$ elements of \mathbb{Z}_{N}^{*} are quadratic residues

Proof:

According to the previous results, \mathbb{Z}_{N}^{*} has $(p-1) \cdot(q-1)$ elements, and each quadratic residue in \mathbb{Z}_{N}^{*} has exactly 4 square roots. Therefore, $(p-1) \cdot(q-1) / 4$ elements of \mathbb{Z}_{N}^{*} are quadratic residues.

- Knowing the factorization of N, there is an efficient algorithm to check if a given $y \in \mathbb{Z}_{N}^{*}$ is a quadratic residue and, if so, to find a square root.

It is, however, believed to be hard to find square roots and to check residuosity modulo N if the factorization of N is not known.
Indeed, we can show that from any algorithm that is able to find square roots efficiently $\bmod N$ we can derive an algorithm that factors N efficiently.

Theorem 3 If there exists an algorithm A of running time that finds quadratic residues modulo $N=p \cdot q$ with probability $\geq \epsilon$, then there exists an algorithm A^{*} of running time $t+O(\log N)^{O(1)}$ that factors N with probability $\geq \frac{\epsilon}{2}$.

Proof: Suppose that, for a quadratic residue $r \in \mathbb{Z}_{N}^{*}$, we can find two square roots x, y such that $x \neq \pm y(\bmod N)$. Then $x^{2} \equiv y^{2} \equiv r \bmod N$, then $x^{2}-y^{2} \equiv 0 \bmod N$. Therefore, $(x-y)(x+y) \equiv 0 \bmod N$. So either $(x-y)$ or $(x+y)$ contains p as a factor, the other contains q as a factor.
The algorithm A^{*} is described as follows:
Given $N=p \times q$

- pick $x \in\{0 \ldots N-1\}$
- if x has common factors with N, return $\operatorname{gcd}(N, x)$
- if $x \in \mathbb{Z}_{N}^{*}$
- $r:=x^{2} \bmod N$
$-y:=A(N, r)$
- if $y \neq \pm x \bmod N$ return $\operatorname{gcd}(N, x+y)$

WIth probability ϵ over the choice of r, the algorithm finds a square root of r. Now the behavior of the algorithm is independent of how we selected r, that is which of the four square roots of r we selected as our x. Hence, there is probability $1 / 2$ that, conditioned on the algorithm finding a square root of r, the square root y satisfies $x \neq \pm y(\bmod N)$, where x is the element we selected to generate r.

3 The Quadratic Residuosity Protocol

We consider the following protocol for proving quadratic residuosity.

- Verifier's input: an integer N (product of two unknown odd primes) and a integer $r \in \mathbb{Z}_{N}^{*}$;
- Prover's input: N, r and a square root $x \in Z_{N}^{*}$ such that $x^{2} \bmod N=r$.
- The prover picks a random $y \in Z_{N}^{*}$ and sends $a:=y^{2} \bmod N$ to the verifier
- The verifier picks at random $b \in\{0,1\}$ and sends b to the prover
- The prover sends back $c:=y$ if $b=0$ or $c:=y \cdot x \bmod N$ if $b=1$
- The verifier cheks that $c^{2} \bmod N=a$ if $b=0$ or that $c^{2} \equiv a \cdot r(\bmod N)$ if $b=1$, and accepts if so.

We show that:

- If r is a quadratic residue, the prover is given a square root x, and the parties follow the protocol, then the verifier accepts with probability 1 ;
- If r is not a quadratic residue, then for every cheating prover strategy P^{*}, the verifier rejects with probability $\geq 1 / 2$.

Proof:

Suppose r is not a quadratic residue. Then it is not possible that both a and $a \times r$ are quadratic residues. If $a=y^{2} \bmod N$ and $a \times r=w^{2} \bmod N$, then $r=w^{2}\left(y^{-1}\right)^{2} \bmod$ N, meaning that r is also a perfect square.

With probability $1 / 2$, the verifier rejects no matter what the Prover's strategy is.

Next time we shall prove that the protocol is zero knowledge.

