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Summary

Today we show that the graph isomorphism protocol we defined last time is indeed a
zero-knowledge protocol. Then we discuss the quadratic residuosity problem modulo
a composite, and define a protocol for proving quadratic residuosity. (We shall prove
that the protocol is zero knowledge next time.)

1 The Graph Isomorphism Protocol

Last time we considered the following protocol for the graph isomorphism problem.

• Verifier’s input: two graphs G1 = (V,E1), G2 = (V,E2);

• Prover’s input: G1, G2 and permutation π∗ such that π∗(G1) = G2; the prover
wants to convince the verifier that the graphs are isomorphic

• The prover picks a random permutation πR : V → V and sends the graph
G := πR(G2)

• The verifier picks at random b ∈ {1, 2} and sends b to the prover

• The prover sends back πR if b = 2, and πR(π∗(·)) otherwise

• The verifier cheks that the permutation π received at the previous round is such
that π(Gb) = G, and accepts if so.

In order to prove that this protocol is zero knowledge, we have to show the existence
of an efficient simulator.

Theorem 1 (Honest-Verifier Zero Knowledge) There exists an efficient simu-
lator algorithm S∗ such that, for every two isomorphic graphs G1, G2, and for every
isomorphism π between them, the distributions of transcripts

P (π,G1, G2)↔ V er(G1, G2) (1)
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and
S(G1, G2) (2)

are identical, where P is the prover algorithm and V er is the verifier algorithm in the
above protocol.

Proof:

Algorithm S on input G1, G2 is described as follows:

• Input: graphs G1, G2

• pick uniformly at random b ∈ {1, 2}, πR : V → V

• output the transcript:

1. prover sends G = πR(Gb)

2. verifier sends b

3. prover sends πR

At the first step, in the original protocol we have a random permutation of G2, while in
the simulation we have either a random permutation of G1 or a random permutation
of G2; a random permutation of G1, however, is distributed as πR(π∗(G2)), where πR
is uniformly distributed and π∗ is fixed. This is the same as a random permutation
of G2, because composing a fixed permutation with a random permutation produces
a random permutation.

The second step, both in the simulation and in the original protocol, is a random bit
b, selected independently of the graph G sent in the first round. This is true in the
simulation too, because the distribution of G := πR(Gb) conditioned on b = 1 is, by
the above reasoning, identical to the distribution of G conditioned on b = 0.

Finally, the third step is, both in the protocol and in the simulation, a distribution
uniformly distributed among those establishing an isomorphism between G and Gb.
�

To establish that the protocol satisfies the general zero knowledge protocol, we need
to be able to simulate cheating verifiers as well.

Theorem 2 (General Zero Knowledge) For every verifier algorithm V ∗ of com-
plexity t there is a simulator algorithm S∗ of expected complexity ≤ 2t + O(n2) such
that, for every two isomorphic graphs G1, G2, and for every isomorphism π between
them, the distributions of transcripts

P (π,G1, G2)↔ V ∗(G1, G2) (3)
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and
S∗(G1, G2) (4)

are identical.

Proof:

Algorithm S∗ on input G1, G2 is described as follows:

Input G1, G2

1. pick uniformly at random b ∈ {1, 2}, πR : V → V

• G := πR(Gb)

• let b′ be the second-round message of V ∗ given input G1, G2, first message G

• if b 6= b′, abort the simulation and go to 1.

• else output the transcript

– prover sends G

– verifier sends b

– prover sends πR

As in the proof of Theorem 1, G has the same distribution in the protocol and in the
simulation.

The important observation is that b′ depends only on G and on the input graphs, and
hence is statistically independent of b. Hence, P[b = b′] = 1

2
and so, on average, we

only need two attempts to generate a transcript (taking overall average time at most
2t+O(n2)). Finally, conditioned on outputting a transcript, G is distributed equally
in the protocol and in the simulation, b is the answer of V ∗, and πR at the last round
is uniformly distributed among permutations establishing an isomorphism between G
and Gb. �

2 The Quadratic Residuosity Problem

We review some basic facts about quadratic residuosity modulo a composite.

If N = p ·q is the product of two distinct odd primes, and Z∗N is the set of all numbers
in {1, . . . , N − 1} having no common factor with N , then we have the following easy
consequences of the Chinese remainder theorem:
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• Z∗N has (p− 1) · (q− 1) elements, and is a group with respect to multiplication;

Proof:

Consider the mapping x→ (x mod p, x mod q); it is a bijection because of the
Chinese remainder theorem. (We will abuse notation and write x = (x mod
p, x mod q).) The elements of Z∗N are precisely those which are mapped into
pairs (a, b) such that a 6= 0 and b 6= 0, so there are precisely (p − 1) · (q − 1)
elements in Z∗N .

If x = (xp, xq), y = (yp, yq), and z = (xp × yp mod p, xq × yq mod q), then
z = x× y mod N ; note that if x, y ∈ Z∗N then xp, yp, xq, yq are all non-zero, and
so z mod p and z mod q are both non-zero and z ∈ Z∗N .

If we consider any x ∈ Z∗N and we denote x′ = (x−1
p mod p, x−1

q mod q), then
x · x′ mod N = (xpx

−1
p , xqx

−1
q ) = (1, 1) = 1.

Therefore, Z∗N is a group with respect to multiplication. �

• If r = x2 mod N is a quadratic residue, and is an element of Z∗N , then it has
exactly 4 square roots in Z∗N
Proof:

If r = x2 mod N is a quadratic residue, and is an element of Z∗N , then:

r ≡ x2 mod p

r ≡ x2 mod q.

Define xp = x mod p and xq = x mod q and consider the following four numbers:

x = x1 = (xp, xq)

x2 = (−xp, xq)
x3 = (xp,−xq)
x4 = (−xp,−xq).
x2 ≡ x2

1 ≡ x2
2 ≡ x2

3 ≡ x2
4 ≡ r mod N .

Therefore, x1, x2, x3, x4 are distinct square roots of r, so r has 4 square roots.

�

• Precisely (p− 1) · (q − 1)/4 elements of Z∗N are quadratic residues

Proof:

According to the previous results, Z∗N has (p − 1) · (q − 1) elements, and each
quadratic residue in Z∗N has exactly 4 square roots. Therefore, (p−1) · (q−1)/4
elements of Z∗N are quadratic residues. �
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• Knowing the factorization of N , there is an efficient algorithm to check if a
given y ∈ Z∗N is a quadratic residue and, if so, to find a square root.

It is, however, believed to be hard to find square roots and to check residuosity modulo
N if the factorization of N is not known.

Indeed, we can show that from any algorithm that is able to find square roots effi-
ciently mod N we can derive an algorithm that factors N efficiently.

Theorem 3 If there exists an algorithm A of running time t that finds quadratic
residues modulo N = p · q with probability ≥ ε, then there exists an algorithm A∗ of
running time t+O(logN)O(1) that factors N with probability ≥ ε

2
.

Proof: Suppose that, for a quadratic residue r ∈ Z∗N , we can find two square roots
x, y such that x 6= ±y (mod N). Then x2 ≡ y2 ≡ r mod N , then x2−y2 ≡ 0 mod N .
Therefore, (x − y)(x + y) ≡ 0 mod N . So either (x − y) or (x + y) contains p as a
factor, the other contains q as a factor.

The algorithm A∗ is described as follows:

Given N = p× q

• pick x ∈ {0 . . . N − 1}

• if x has common factors with N , return gcd(N, x)

• if x ∈ Z∗N

– r := x2 mod N

– y := A(N, r)

– if y 6= ±x mod N return gcd(N, x+ y)

WIth probability ε over the choice of r, the algorithm finds a square root of r. Now
the behavior of the algorithm is independent of how we selected r, that is which of
the four square roots of r we selected as our x. Hence, there is probability 1/2 that,
conditioned on the algorithm finding a square root of r, the square root y satisfies
x 6= ±y (mod N), where x is the element we selected to generate r. �

3 The Quadratic Residuosity Protocol

We consider the following protocol for proving quadratic residuosity.
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• Verifier’s input: an integer N (product of two unknown odd primes) and a
integer r ∈ Z∗N ;

• Prover’s input: N, r and a square root x ∈ Z∗N such that x2 mod N = r.

• The prover picks a random y ∈ Z∗N and sends a := y2 mod N to the verifier

• The verifier picks at random b ∈ {0, 1} and sends b to the prover

• The prover sends back c := y if b = 0 or c := y · x mod N if b = 1

• The verifier cheks that c2 mod N = a if b = 0 or that c2 ≡ a · r (mod N) if
b = 1, and accepts if so.

We show that:

• If r is a quadratic residue, the prover is given a square root x, and the parties
follow the protocol, then the verifier accepts with probability 1;

• If r is not a quadratic residue, then for every cheating prover strategy P ∗, the
verifier rejects with probability ≥ 1/2.

Proof:

Suppose r is not a quadratic residue. Then it is not possible that both a and a×r are
quadratic residues. If a = y2 mod N and a× r = w2 mod N , then r = w2(y−1)2 mod
N , meaning that r is also a perfect square.

With probability 1/2, the verifier rejects no matter what the Prover’s strategy is.

�

Next time we shall prove that the protocol is zero knowledge.
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