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Summary

In this lecture, we show that the protocol for quadratic residuosity discussed last
week is indeed zero-knowledge. Next we move on to the formal definition of proof
of knowledge, and we show that the quadratic residuosity protocol is also a proof
of knowledge. We also start discussing the primitives required to prove that any
language in NP admits a zero-knowledge proof.

1 The Quadratic Residuosity Protocol

Last time we considered the following protocol for quadratic residuosity:

• Verifier’s input: an integer N (product of two unknown odd primes) and a
integer r ∈ Z∗

N ;

• Prover’s input: N, r and a square root x ∈ Z∗
N such that x2 mod N = r.

• The prover picks a random y ∈ Z∗
N and sends a := y2 mod N to the verifier

• The verifier picks at random b ∈ {0, 1} and sends b to the prover

• The prover sends back c := y if b = 0 or c := y · x mod N if b = 1

• The verifier checks that c2 mod N = a if b = 0 or that c2 ≡ a · r (mod N) if
b = 1, and accepts if it is so.

Clearly, the protocol is complete i.e. if x2 mod N = r, then the verifier accepts with
probability 1. To show soundness of the protocol, note that if r is not a quadratic
residue modN , then for any a ∈ Z∗

N , both a and ar cannot be quadratic residues in
mod N . Hence, in case r is not a quadratic residue, the verifier rejects with probability
at least 1

2
.

We now show that the above protocol is also zero knowledge. More precisely, we show
the following.
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Theorem 1 For every verifier algorithm V ∗ of complexity ≤ t there is a simulator
algorithm of average complexity ≤ 2t+ (logN)O(1) such that for every odd composite
N , every r which is a quadratic residue (mod N) and every square root of x of r,
the distributions

S∗(N, r) (1)

and
P (N, r, x)↔ V ∗(N, r) (2)

are identical.

Proof: The simulator S∗ is defined as follows. It first picks b1 ∈ {0, 1} uniformly
at random. It also picks y ∈ Z∗

n uniformly at random. If b1 = 0, set a = y2 and
if b1 = 1, set a = y2r−1. Note that irrespective of the value of b1, a is a uniformly
random element of Z∗

n. With this S∗ simulates the interaction as follows. First, it
simulates the prover by sending a. If the second round reply from V ∗ (call it b) is not
the same as b1, then it aborts the simulation and starts again. If not, then clearly
c = y is the reply the prover will send for both b = 0 and b = 1. Hence whenever the
simulation is completed, the distribution of the simulated interaction is same as the
actual interaction. Also observe that b1 is a random bit statistically independent of
a while b is totally dependent on a (and probably some other random coin tosses).
Hence in expectation, in two trials of the simulation, one will be able to simulate one
round of the actual interaction.Hence the expected time required for simulation is the
time to simulate V ∗ twice and the time to do couple of multiplications in Z∗

n. So, in
total it is at most 2t+ (logN)O(1). �

2 Proofs of Knowledge

Suppose that L is a language in NP; then there is an NP relation RL(·, ·) computable
in polynomial time and polynomial p(·) such that x ∈ L if and only if there exists a
witness w such that |w| ≤ p(|x|) (where we use |z| to denote the length of a bit-string
z) and R(x,w) = 1.

Recall the definition of soundness of a proof system (P, V ) for L: we say that the proof
system has soundness error at most ε if for every x 6∈ L and for every cheating prover
strategy P ∗ the probability that P ∗(x)↔ V (x) accepts is at most ε. Equivalently, if
there is a prover strategy P ∗ such that the probability that P ∗(x)↔ V (x) accepts is
bigger than ε, then it must be the case that x ∈ L. This captures the fact that if the
verifier accepts then it has high confidence that indeed x ∈ L.

In a proof-of-knowledge, the prover is trying to do more than convince the verifier
that a witness exists proving x ∈ L; he wants to convince the verifier that he (the
prover) knows a witness w such that R(x,w) = 1. How can we capture the notion
that an algorithm “knows” something?
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Definition 2 (Proof of Knowledge) A proof system (P, V ) for an NP relation RL

is a proof of knowledge with knowledge error at most ε and extractor slowdown es if
there is an algorithm K (called a knowledge extractor) such that, for every prover
strategy P ∗ of complexity ≤ t and every input x, if

P[P ∗(x)↔ V (x) accepts] ≥ ε+ δ

then K(P ∗, x) outputs a w such that R(x,w) = 1 in average time at most

es · (nO(1) + t) · δ−1

In the definition, giving P ∗ as an input to K means to give the code of P ∗ to K. A
stronger definition, which is satisfied by all the proof systems we shall see, is to let
K be an oracle algorithm of complexity δ−1 · es · poly(n), and allow K to have oracle
access to P ∗. In such a case, “oracle access to a prover strategy” means that K is
allowed to select the randomness used by P ∗, to fix an initial part of the interaction,
and then obtain as an answer what the next response from P ∗ would be given the
randomness and the initial interaction.

Theorem 3 The protocol for quadratic residuosity of the previous section is a proof
of knowledge with knowledge error 1/2 and extractor slowdown 2.

Proof: Consider an a such that the prover returns the correct answer both when
b = 0 and b = 1. More precisely, when b = 0, prover returns a in the third round
of the interaction and if b = 1, prover returns a.r in the third round of interaction.
If we can find such an a, then upon dividing the answers (for the cases when b = 1
and b = 0) returned by the prover strategy in third round, we can get the value of r.
Note that if verifier V accepts with probability 1

2
+ δ, then by a Markov argument,

we get that with probability δ, a randomly chosen a ∈ Z∗
n is such that for both b = 0

and b = 1, the prover returns the correct answer. Clearly, the knowledge error of the
protocol is 1

2
and for one particular a, the prover strategy is executed twice. So, the

extractor slowdown is 2. Note that in expectation, we will be sampling about 1
δ

times
before we get an a with the aforementioned property. Hence, the total expected time
for running K is 2 · ((logN)O(1) + t) · δ−1 �

3 Uses of Zero Knowledge proofs

In the coming lectures, we shall consider general multi-party protocols, an example of
which might be playing “poker over the phone/internet”. In this, one needs to devise
a protocol such that n mutually distrusting players can play poker or any other game
over the internet.
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Our approach will be to first devise a protocol for the “honest but curious” case, in
which all the players follow the protocol but they do try to gain information about
others by simply tracking all the moves in the game. To go to the general case, we
will require that every player gives a zero knowledge proof that it played honestly
in every round. As one can see, this statement is much more general than say that
two graphs are isomorphic. However, it is a statement which has a short certificate
and hence is in NP . This gives motivation for our next topic which is developing
zero knowledge protocols for every language in NP . We shall describe an important
primitive for this purpose called commitment schemes.

4 Introduction to Commitment scheme

Consider the situation when Alice and Bob are interacting using a protocol. The
protocol may want that at some stage Alice commits to a value so that she cannot
go back on it later. Simultaneously, it may also require that it is infeasible for Bob
to know what the value is to which Alice has committed unless much later in the
interaction (may be when Alice wants to reveal it). This kind of a scheme is called
a commitment scheme. A real world situation is the following. Alice writes the
value she wants to commit to, on a piece of paper and puts it inside a locked box.
Subsequently, she sends the locked box to Bob without its key. In this situation, it is
not possible for Alice to repudiate what she had committed to but at the same time
unless Bob has the key, he also cannot the value Alice has committed to.

There are two parts to such a protocol. One is that Alice cannot deny her commitment
and another is that Bob cannot know the contents without help from Alice. It should
be clear that exactly one of these things can be information theoretically hard. That
is, we may have exactly one of following two situations: It is information theoretically
impossible for Alice to go back on her commitment but only computationally infeasible
for Bob to know the commitment without Alice’s consent and vice versa.
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