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Notes on Algebra

These notes contain as little theory as possible, and most results are stated without
proof. Any introductory book on algebra will contain proofs and put the results in a
more general, and more beautiful framework.

For example, a book by Childs [C95] covers all the required material without getting
too abstract. It also points out the cryptographic applications.

1 Prime Numbers

By integer, we mean a positive or negative integer. We denote by Z the set on integers
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. A natural number is a non-negative integer. We
denote by N the set of natural numbers N = {0, 1, 2, 3 . . .}. We also denote by Z+

the set Z+ = {1, 2, 3, . . .} of positive integers.

For an integer n, we denote by ||n|| the length of n, i.e. the number of bits needed to
represent it, i.e. ||n|| = dlog2 ne. Logarithms will always be to the base 2, so we will
omit the base hereafter. We will denote by lnn the natural logarithm of n, i.e. the
logarithm taken to the base e = 2.71828 . . .

For integers k, n, we say that k divides n (or that k is divisor of n) if n is a multiple
of k. For example 5 divides 35. We write k|n when k divides n.

A prime number is a positive integer p ≥ 2 whose only divisors are 1 and p. Notice
that 2 is the only even prime number.

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . ..

When a number is not prime, it is called composite. A composite can always be
written (in a unique way) as a product of primes, possibly with repetitions. E.g.
300 = 2× 2× 5× 5.

There are infinitely many prime numbers (which is very easy to prove), and in fact
there are quite a lot of them (which is harder to prove). Specifically, if we define π(n)
to be the number of prime numbers p such that 2 ≤ p ≤ n, then π(n) is about n/ lnn.
Formally

Theorem 1 (Prime Numbers Theorem) limn→∞
π(n)
n/ lnn

= 1

The following bounds are also known
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π(n) ≥ n

lnn

and, for n ≥ 17,

π(n) ≤ 1.10555
n

lnn

There is an efficient randomized algorithm that on input an integer tests whether
it is prime or not. Therefore if we want to generate a large prime (in the interval
from 1 to n, where n can be thought of as a number around 10200) we can just pick a
random number in the set {1, . . . , n = 10200} and then test whether it is prime. If it is
not, we try again. Each time we have a probability ≈ 1/ lnn ≈ 1/460 of succeeding,
so we expect to succeed after less than 500 attempts. Big prime numbers are very
important in applied cryptography, and the Prime Number Theorem is a very useful
tools to analyze certain cryptographic protocols.

The Prime Number Theorem has exceedingly difficult proofs, but it is easy to prove
at least that there are infinitely many primes. Suppose, by contradiction, that there
are only finitely many primes, and let them be p1, . . . , pn. Consider the number
m = p1 · p2 · · · pn + 1. Since m is bigger than any prime, it must be composite, and
hence it must be divisible by some prime. We note that m is not divisible by p1, as
when we divide m by p1 we get the quotient p2 · · · pn and the remainder 1. Similarly,
m is not divisible by p2, neither by p3, . . . , neither by pn. So we get a contradiction.

2 Modular Arithmetic

Let a, n be integers (n ≥ 2). If we try to divide a by n using the grade-school
algorithm we end up with two numbers q and r (the quotient and the remainder)
such that aq + r = n and 0 ≤ r ≤ n− 1. For example, if we divide 15 by 7 we get a
quotient 2 and a remainder 1 and the equation 2 · 7 + 1 = 15. Such numbers q and r
are unique. For integers a, b, n we write

a = b (mod n)

if a and b have the same remainder when divided by n (equivalently, if a − b is a
multiple of n). For example 15 = 8 (mod 7).

For a fixed integer n, the relation · = · (mod n) has several properties of ordinary
equality. For example,

• For every a ∈ Z, a = a (mod n);

• For every a, b, c ∈ Z, if a = b (mod n) and b = c (mod n), then a = c (mod n);
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• For every a, a′, b, b′ ∈ Z, if a = a′ (mod n) and b = b′ (mod n) then a + b =
a′ + b′;

• For every a, a′, k, k′ ∈ Z, if a = a′ (mod n) and k = k′ (mod n), then ak = a′k′

(mod n).

The last two properties imply that when we do arithmetic operations modulo n, then
we obtain the same result if we replace one term by another one that is equal modulo
n. In particular, it is the same if every term a is replaced by the remainder of its
division by n. So, when doing operations modulo n, we can restrict ourselves to use
only the integers 0, . . . , n− 1.

We denote by Zn = {0, 1, . . . , n− 1}, and we define on this set operations of addition
and multiplication modulo n. Therefore, for every two elements a, b ∈ Zn we define
the element a+ b (mod n), which is defined as the (unique) element c of Zn such that
c = a+ b (mod n).

For example, 5 + 4 = 2 (mod 7) and 2 + 1 = 0 (mod 3).

Similarly, we define a product operation in Zn. For example, 3 · 4 = 3 (mod 9).

Addition in Zn is “invertible.” Specifically, for each element a ∈ Zn there is an
element a′ ∈ Zn such that a + a′ = 0 (mod n) (one can take a′ = n− a). This gives
an analog in Zn of the subtraction operation.

Multiplication, alas, is not necessarily invertible. That is, it is not necessarily true
that for an element a ∈ Zn there is an element a′ ∈ Zn such that a · a′ = 1 (mod n).

Consider for example Z6 and the element 2. If there was an element a ∈ Z6 such
that 2 · a = 1, then we would have 3 · 2 · a = 3 · 1 = 3 (mod 6). But we also have
3 · 2 · a = 6 · a = 0 · a = 0 (mod 6), and so we have a contradiction. It is possible
to characterize precisely the cases where an element a has an inverse with respect
to multiplication in Zn. To this aim, we need a result that is also useful for its
algorithmic aspect. Recall that the greatest common divisor (abbreviated gcd) of two
numbers n and m is the largest integer that is both a divisor of n and a divisor of m.

Theorem 2 (Euclid’s algorithm) There exists an algorithm that on input two pos-
itive integers m and n returns k = gcd(m,n) and two integers α, β such that αn +
βm = k. The algorithm runs in time polynomial in the number of digits of n and m.

Example 3 On input 14 and 10, Euclid’s algorithm returns 2 = gcd(10, 14) and the
coefficients α = 3 and β = −2. Indeed, 3× 10− 2× 14 = 2.

Example 4 On input 60 and 17, Euclid’s algorithm returns 1 = gcd(60, 17) and the
coefficients α = 2 and β = −7. Indeed, 2× 60− 7× 17 = 1.
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Let us return to the issue of inverses in Zn. Suppose a and n are such that gcd(a, n) =
k > 1, we will show that a cannot have an inverse. Let us call b = n/k. Note that
b ∈ Zn, b 6= 0. Assume by contradiction that there exists a′ ∈ Zn such that a · a′ = 1
(mod n), then b · (a · a′) = b (mod n), but also (doing operations over the integers
now) b · a · a′ = (n/k) · a · a′ = n · (a/k) · a′ which is a multiple of n (since a/k is an
integer), and therefore we have (b · a) · a′ = 0 (mod n).

Consider now the case gcd(a, n) = 1. Then, using Euclid’s algorithm, we can find
coefficients α, β such that αa+βn = 1, that is αa = 1 (mod n), that is α is an inverse
of a. In this case not only does a have an inverse, but we can also find it efficiently
using Euclid’s algorithm.

We say that two integers n and m are co-prime if gcd(n,m) = 1. Putting everything
together we have

Theorem 5 For an element a ∈ Zn, there exists an element a′ ∈ Zn such that
a · a′ = 1 (mod n) if and only if a and n are co-prime.

3 Groups

Definition 6 (Group) A group is a set G endowed with an operation, that we de-
note, say, by ⊗, that given two elements of G returns an element of G (i.e. for every
a, b ∈ G, (a⊗ b) ∈ G; the operation must satisfy the following properties:

1. For every a, b ∈ G, a⊗ b = b⊗ a;

2. For every a, b, c ∈ G, (a⊗ b)⊗ c = a⊗ (b⊗ c);

3. There exists an element u ∈ G such that for every a ∈ G, a⊗ u = u⊗ a = a;

4. For every element a ∈ G there exists an element a′ ∈ G such that a⊗ a′ = u.

Remark 7 To be precise, what we have just defined is the notion of Abelian group,
that is a special type of groups. In general, G can be a group even if Property 1 is not
satisfied (in such a case, it will be called a non-Abelian group). In this course we will
never consider non-Abelian group, so it is not necessary to insist on the difference.
An example of a non-Abelian group is the set of n × n matrices, together with the
matrix multiplication operation.

Our canonical example of a group is Zn with the operation ·+ · (mod n).

Here is another interesting example. For a prime p, define Z∗p = {1, 2, . . . , p− 1}.

Theorem 8 If p is a prime, then Z∗p together with multiplication (mod p) is a group.
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To prove the theorem we have to check the required properties of a group. First of
all, it is definitely true that a · b = b ·a (mod p) and that a · (b · c) = (a · b) · c (mod p).
Furthermore we have a special element u, namely 1, such that a · 1 = 1 · a = a
(mod p). Using the results of the previous section, and the fact that a prime number
is co-prime with every other number small than itself, we also have that for every
a ∈ Z∗p there is an a′ ∈ Z∗p such that a · a′ = 1 (mod p). In fact, we should also check
one more property, namely that for every a, b ∈ Z∗p it is true that a · b (mod p) ∈ Z∗p,
i.e. that is impossible that a ·b = 0 (mod p). This follows by contradiction: if a ·b = 0
(mod p), this means that a · b (taking the product over the integers) is a multiple of
p. Since p is a prime number, it means that either a or b is a multiple of p. But both
a and b are smaller than p, and so we have a contradiction.

It would be nice to have a similar result for arbitrary n, and say that Zn − {0} is a
group with respect to multiplication (mod n). Unfortunately this is not true when
n is a composite number (elements of Zn having some common factor with n do not
have an inverse, as seen in the previous section). Yet, it is still possible to define a
group.

Define Z∗n = {a : 1 ≤ a ≤ n − 1 and gcd(a, n) = 1}. For example, Z∗6 = {1, 5} and
Z∗10 = {1, 3, 7, 9}. Note that the definition of Z∗p for p prime is a special case of the
previous definition.

Theorem 9 For every positive integer n, Z∗n is a group with respect to multiplication.

We denote by φ(n) the number of elements of Z∗n, i.e. the number of elements of
{1, 2, . . . , n− 1} that are co-prime with n. It is easy to compute φ(n) given a factor-
ization of n (but is hard otherwise).

Theorem 10

1. If p is prime and k ≥ 1 then φ(pk) = (p− 1)pk−1.

2. If n and m are co-prime then φ(nm) = φ(n)φ(m).

3. If the factorization of n is
∏

i q
ki
i then φ(n) =

∏
i(qi − 1)qki−1

i .

Note that the third item in the theorem follows from the first two.

Example 11 . In order to compute φ(45) we compute the factorization 45 = 32·5 and
then we apply the formula φ(45) = 3·(3−1)2−1 ·(5−1) = 24. Indeed, we can check that
Z∗45 = {1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44} has
24 elements.
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For every n, the group Zn with respect to the sum has the following nice property:
every element k ∈ Zn can be obtained by summing 1 to itself k times. One can define
a generalization of this property for arbitrary groups.

Definition 12 let G be a group with n elements and operation ⊗. Suppose there
exists an element g ∈ G such that g, g ⊗ g, g ⊗ g ⊗ g,. . . , g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸

n times

are all

different (and so cover all the elements of G). Then G is said to be cyclic and g is
said to be a generator of G.

Therefore Zn is always cyclic and 1 is a generator. Quite interestingly, there is a
similar result for Z∗p, p prime.

Theorem 13 For every prime p, Z∗p is a cyclic wit respect to multiplication (mod p).

We denote by ak (mod n) the value a · a · · · a︸ ︷︷ ︸
k times

(mod n).

Example 14 The group Z∗7 has generators 3 and 5. Indeed, we have

31 = 3 (mod 7) , 32 = 2 (mod 7) , 33 = 6 (mod 7) ,

34 = 4 (mod 7) , 35 = 5 (mod 7) , 36 = 1 (mod 7)

The sequence of powers of 5 is 5, 4, 6, 2, 3, 1.

The following results are useful in the analysis of RSA.

Theorem 15 (Fermat’s Little Theorem) If p is a prime and a ∈ Z∗p, then ap−1 =
1 (mod p).

Fermat’s theorem is a special case of the following result.

Theorem 16 (Euler’s theorem) If n ≥ 2 and a ∈ Z∗n, then aφ(n) = 1 (mod n).

In fact the definition of the function φ() is due to Euler.

Some of our interest in the notions of cyclic groups and generators is related to the
exponentiation function (a candidate one-way function). In that application, one has
to be able to generate at random a generator of a group Z∗p (p prime). For this random
generation, it is important to be able to test whether a given element is a generator
and to know how many elements are generators.
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Given n, a ∈ Z∗n and the factorization of φ(n), there is an efficient algorithm that
checks whether a is a generator for Z∗n. (By “efficient” algorithm we mean an algo-
rithm that runs in time polynomial in the number of digits of n and a — and in the
number of bits needed to represent the factorization of φ(n), which is polynomial in
the number of digits of n anyway.)

Furthermore, the following results guarantee that there are several generators.

Theorem 17 For a prime p, Z∗p has φ(p− 1) generators.

Theorem 18 For every n, φ(n) ≥ n/6 ln lnn.

Using the prime number theorem, it is a triviality to prove (for n ≥ 17) the weaker

bound φ(n) ≥ (n−1)
ln(n−1)

− log n. Indeed, there are π(n − 1) ≥ (n−1)
ln(n−1)

primes in the
interval 2, . . . , n − 1, and all of them are co-prime with n, except those that are
factors of n. But n has at most log n factors.

4 Some more algorithmic tools

4.1 The Chinese Remainders Theorem

The following is a very useful algorithmic result.

Theorem 19 (Chinese Remainders Theorem) Consider a system of congruences
of the form

x = a1 (mod n1)
x = a2 (mod n1)

· · ·
x = ak (mod nk)

Where n1, . . . , nk are pairwise co-prime. Then there is always a solution x in the
interval 1, . . . , n1 ·n2 · · ·nk− 1, and this solution is the only one in the interval. Such
a solution x is efficiently computable given a1, . . . , ak, n1, . . . , nk. Furthermore, the set
of all solutions is precisely the set of integers y such that y = x (mod n1 · n2 · · ·nk).

For example, consider the system

x = 5 (mod 7)
x = 2 (mod 6)
x = 1 (mod 5)
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Then: x = 26 is a solution; 26 it is the only solution in the interval 1, . . . , 209; for
every integer i we have that 26 + 210i is a solution; there is no other solution.

The algorithm to find the solution is simple. Let us call N = n1 · n2 · · ·nk and
Ni = N/ni. Let us also call yi = (Ni)

−1 (mod ni), that is, yi is such that yi ·Ni = 1
(mod ni). By our assumptions on n1, . . . , nk it must be that gcd(Ni, ni) = 1, so yi is
well defined. Then a solution to the system is

k∑
i=1

aiNiyi (mod n1 · n2 · · ·nk)

4.2 Quadratic Residues

A (positive) integer x is said to be a perfect square if there is some integer y ∈ Z
such that x = y2; if so, y is said to be a square root of x. For example 25 is a perfect
square, whose square roots are 5 and −5, while 20 is not a perfect square.

If an integer x is a perfect square then it has precisely two square roots, and they are
efficiently computable given x. Unfortunately, things are not so easy with modular
arithmetic.

Definition 20 An element x ∈ Zn is said to be a quadratic residue (mod n) if there
exists an element y ∈ Zn such that x = y · y (mod n). If so, y is said to be a square
root of x (mod n).

Let us first consider the case of Zp with p prime. Then things are not too different
from the case of the integers.

Theorem 21 Let p be a prime number. If x ∈ Zp (x 6= 0) is a quadratic residue,
then it has exactly two square roots.

Theorem 22 There exists an efficient randomized algorithm that on input p prime
and x ∈ Zp tests whether x is a quadratic residue and, if so, returns the two square
roots of x.

Among the integers, perfect squares are quite rare, and they get sparser and sparser:
there are only about

√
n perfect squares in the interval 1, . . . , n. The situation is

quite different in the case of Zp.

Theorem 23 Let p ≥ 3 be a prime. Then Zp has (p − 1)/2 non-zero quadratic
residues.
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This is easy to see: each one of the p− 1 element y 6= 0 is the square root of y · y, on
the other hand every quadratic residue has two square roots, and so there must be
(p− 1)/2 quadratic residues.

When we are in Zn the situation gets more involved, and it is conjectures that no
efficient algorithm, on input x and n, can determine whether x is a quadratic residue,
let alone find a root. The same conjecture holds when n is the product of two large
primes.

On the other hand, if n = pq is the product of two primes, and the factorization of
n is known, then extracting square roots becomes feasible. The next two results are
proved using the Chinese Remainders Theorem. The algorithm of Theorem 25 uses
the algorithm of Theorem 22 as a subroutine.

Theorem 24 Let n be the product of two primes. If x is a quadratic residue
(mod n), then x has precisely 4 square roots in Zn.

Theorem 25 There is an efficient randomized algorithm that on input (x, p, q) (where
p and q are prime and x ∈ Zpq) tests whether x is a quadratic residue (mod pq); if
so, the algorithm finds all the four square roots of x.
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