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Lecture 4

In which we prove the difficult direction of Cheeger’s inequality.

As in the past lectures, consider an undirected d-regular graph G = (V,E), call A
its adjacency matrix, and M := 1

d
A its scaled adjacency matrix. Let λ1 ≥ · · · ≥ λn

be the eigenvalues of M , with multiplicities, in non-increasing order. We have been
studying the edge expansion of a graph, which is the minimum of h(S) over all non-
trivial cuts (S, V −S) of the vertex set (a cut is trivial if S = ∅ or S = V ), where the
expansion h(S) of a cut is

h(S) :=
Edges(S, V − S)

d ·min{|S|, |V − S|}

We have also been studying the (uniform) sparsest cut problem, which is the problem
of finding the non-trivial cut that minimizes φ(S), where the sparsisty φ(S) of a cut
is

φ(S) :=
Edges(S, V − S)

d
n
|S| · |V − S|

We are proving Cheeger’s inequalities:

1− λ2

2
≤ h(G) ≤

√
2 · (1− λ2) (1)

and we established the left-hand side inequality in the previous lecture, showing that
the quantity 1 − λ2 can be seen as the optimum of a continuous relaxation of φ(G),
so that 1− λ2 ≤ φ(g), and φ(G) ≤ 2h(G) follows by the definition.

Today we prove the more difficult, and interesting, direction. The proof will be
constructive and algorithmic. The proof can be seen as an analysis of the following
algorithm.

1



Algorithm: SpectralPartitioning

• Input: graph G = (V,E) and vector x ∈ RV

• Sort the vertices of V in non-decreasing order of values of entries
in x, that is let V = {v1, . . . , vn} where xv1 ≤ xv2 ≤ . . . xvn

• Let i ∈ {1, . . . , n− 1} be such that h({v1, . . . , vi}) is minimal

• Output S = {v1, . . . , vi}

We note that the algorithm can be implemented to run in time O(|V |+|E|), assuming
arithmetic operations and comparisons take constant time, because once we have com-
puted h({v1, . . . , vi}) it only takes time O(degree(vi+1)) to compute h({v1, . . . , vi+1}).
We have the following analysis of the quality of the solution:

Lemma 1 (Analysis of Spectral Partitioning) Let G = (V,E) be a d-regular
graph, x ∈ RV be a vector such that x ⊥ 1, let M be the normalized adjacency
matrix of G, define

δ :=

∑
i,j Mi,j|xi − xj|2

1
n

∑
i,j |xi − xj|2

and let S be the output of algorithm SpectralPartitioning on input G and x. Then

h(S) ≤
√

2δ

Remark 2 If we apply the lemma to the case in which x is an eigenvector of λ2,
then δ = 1− λ2, and so we have

h(G) ≤ h(S) ≤
√

2 · (1− λ2)

which is the difficult direction of Cheeger’s inequalities.

Remark 3 If we run the SpectralPartitioning algorithm with the eigenvector x of the
second eigenvalue λ2, we find a set S whose expansion is

h(S) ≤
√

2 · (1− λ2) ≤ 2
√
h(G)

Even though this doesn’t give a constant-factor approximation to the edge expansion,
it gives a very efficient, and non-trivial, approximation.

As we will see in a later lecture, there is a nearly linear time algorithm that finds a
vector x for which the expression δ in the lemma is very close to 1− λ2, so, overall,
for any graph G we can find a cut of expansion O(

√
h(G)) in nearly linear time.
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1 Proof of Lemma 1

In the past lecture, we saw that 1 − λ2 can be seen as the optimum of a continuous
relaxation of sparsest cut. Lemma 1 provides a rounding algorithm for the real vectors
which are solutions of the relaxation. In this section we will think of it as a form
of randomized rounding. Later, when we talk about the Leighton-Rao sparsest cut
algorithm, we will revisit this proof and think of it in terms of metric embeddings.

To simplify notation, we will assume that V = {1, . . . , n} and that x1 ≤ x2 ≤ · · ·xn.
Thus our goal is to prove that there is an i such that h({1, . . . , i}) ≤

√
2δ

We will derive Lemma 1 by showing that there is a distribution D over sets S of the
form {1, . . . , i} such that

ES∼D
1
d
Edges(S, V − S)

ES∼D min{|S|, |V − S|}
≤
√

2δ (2)

We need to be a bit careful in deriving the Lemma from (2). In general, it is not true
that a ratio of averages is equal to the average of the ratios, so (2) does not imply
that Eh(S) ≤

√
2δ. We can, however, apply linearity of expectation and derive from

(2) the inequality

E
S∼D

1

d
Edges(S, V − S)−

√
2δmin{|S|, |V − S|} ≤ 0

So there must exist a set S in the sample space such that

1

d
Edges(S, V − S)−

√
2δmin{|S|, |V − S|} ≤ 0

meaning that, for that set S, we have h(S) ≤
√

2δ. (Basically we are using the fact
that, for random variables X, Y over the same sample space, although it might not
be true that E X

E Y
= E X

Y
, we always have P[X

Y
≤ E X

E Y
] > 0, provided that Y > 0 over

the entire sample space.)

From now on, we will assume that

1. xbn/2c = 0, that is, the median of the entries of x is zero

2. x2
1 + x2

n = 1

which can be done without loss of generality because adding a fixed constant c to all
entries of x, or multiplying all the entries by a fixed constant does not change the
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value of δ nor does it change the property that x1 ≤ · · · ≤ xn. The reason for these
choices is that they allow us to define a distribution D over sets such that

E
S∼D

min{|S|, |V − S|} =
∑

i

x2
i (3)

We define the distribution D over sets of the form {1, . . . , i}, i ≤ n−1, as the outcome
of the following probabilistic process:

• We pick a real value t in the range [x1, xn] with probabily density function

f(t) = 2|t|. That is, for x1 ≤ a ≤ b ≤ xn, P[a ≤ t ≤ b] =
∫ b

a
2|t|dt.

Doing the calculation, this means that P[a ≤ t ≤ b] = |a2 − b2| if a, b have the
same sign, and P[a ≤ t ≤ b] = a2 + b2 if they have different signs.

• We let S := {i : xi ≤ t}

According to this definition, the probability that an element i ≤ n/2 belongs to the
smallest of the sets S, V −S is the same as the probability that it belongs to S, which
is the probability that the threshold t is in the range [xi, 0], and that probability is x2

i .
Similarly, the probability that an element i > n/2 belongs to the smallest of S, V −S
is the same as the probability that it belongs to V − S, which is the probability that
t is in the range [0, xi], which is again x2

i . So we have established (3).

We will now estimate the expected number of edges between S and V − S.

E
1

d
Edges(S, V − S) =

1

2

∑
i,j

Mi,j P[(i, j) is cut by (S, V − S)]

The event that the edge (i, j) is cut by the partition (S, V − S) happens when the
value t falls in the range between xi and xj. This means that

• If xi, xj have the same sign,

P[(i, j) is cut by (S, V − S)] = |x2
i − x2

j |

• If xi, xj have different sign,

P[(i, j) is cut by (S, V − S)] = x2
i + x2

j

Some attempts, show that a good expression to upper bound both cases is

P[(i, j) is cut by (S, V − S)] ≤ |xi − xj| · (|xi|+ |xj|)
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Plugging into our expression for the expected number of cut edges, and applying
Cauchy-Schwarz

E
1

d
Edges(S, V − S) ≤ 1

2

∑
i,j

Mi,j|xi − xj| · (|xi|+ |xj|)

≤ 1

2

√∑
ij

Mij(xi − xj)2 ·
√∑

ij

Mij(|xi|+ |xj|)2

The assumption of the Lemma tell us that

∑
ij

Mij(xi − xj)
2 = δ

1

n

∑
ij

(xi − xj)
2

And we can rewrite

∑
ij

(xi − xj)
2 = 2n

∑
i

x2
i − 2

∑
ij

xixj = 2n
∑

i

x2
i − 2

(∑
i

xi

)2

≤ 2n
∑

i

x2
i

which gives us

∑
ij

Mij(xi − xj)
2 ≤ 2δ

∑
i

x2
i

Finally, it remains to study the expression
∑

ij Mij(|xi| + |xj|)2. By applying the

inequality (a + b)2 ≤ 2a2 + 2b2 (which follows by noting that 2a2 + 2b2 − (a + b)2 =
(a− b)2 ≥ 0), we derive

∑
ij

Mij(|xi|+ |xj|)2 ≤
∑
ij

Mij(2x
2
i + 2x2

j) = 4
∑

i

x2
i

Putting all the pieces together we have

E
1

d
Edges(S, V − S) ≤

√
2δ ·

∑
i

x2
i (4)

which, together with (3) gives (2), which, as we already discussed, implies the Main
Lemma 1.
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