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Lecture 1

In which we describe what this course is about and we review some linear algebra.1

1 Overview

This class is about the following topics:

1. Approximation algorithms for graph partitioning problems. We will study ap-
proximation algorithms for the sparsest cut problem, in which one wants to
find a cut (a partition into two sets) of the vertex set of a given graph so that
a minimal number of edges cross the cut compared to the number of pairs of
vertices that are disconnected by the removal of such edges.

This problem is related to estimating the edge expansion of a graph and to find
balanced separators, that is, ways to disconnect a constant fraction of the pairs
of vertices in a graph after removing a minimal number of edges.

Finding balanced separators and sparse cuts arises in clustering problems, in
which the presence of an edge denotes a relation of similarity, and one wants to
partition vertices into few clusters so that, for the most part, vertices in the same
cluster are similar and vertices in different clusters are not. For example, sparse
cut approximation algorithms are used for image segmentation, by reducing the
image segmentation problem to a graph clustering problem in which the vertices
are the pixels of the image and the (weights of the) edges represent similarities
between nearby pixels.

Balanced separators are also useful in the design of divide-and-conquer algo-
rithms for graph problems, in which one finds a small set of edges that discon-
nects the graph, recursively solves the problem on the connected components,
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and then patches the partial solutions and the edges of the cut, via either exact
methods (usually dynamic programming) or approximate heuristic. The spar-
sity of the cut determines the running time of the exact algorithms and the
quality of approximation of the heuristic ones.

We will study three approximation algorithms:

(a) The Spectral Partitioning Algorithm, based on linear algebra;

(b) The Leighton-Rao Algorithm, based on a linear programming relaxation;

(c) The Arora-Rao-Vazirani (ARV) Algorithm, based on a semidefinite pro-
gramming relaxation.

The three approaches are related, because the continuous optimization problem
that underlies the Spectral Partitioning algorithm is a relaxation of the ARV
semidefinite programming relaxation, and so is the Leighton-Rao relaxation.
Rounding the Leighton-Rao and the ARV relaxations raise interesting problems
in metric geometry, some of which are still open.

2. Explicit Constructions of Bounded-Degree Expanders. Expander graphs are
graphs with very strong connectivity and “pseudorandomness” properties. Con-
structions of constant-degree expanders are useful in a variety of applications,
from the design of data structures, to the derandomization of algorithms, from
efficient cryptographic constructions to being building blocks of more complex
quasirandom objects.

There are two families of approaches to the explicit (efficient) construction of
bounded-degree expanders. One is via algebraic constructions, typically ones in
which the expander is constructed as a Cayley graph of a finite group. Usually
these constructions are easy to describe but rather difficult to analyze. The
study of such expanders, and of the related group properties, has become a
very active research program, involving mostly ergodic theorists and number
theorists. There are also combinatorial constructions, which are somewhat more
complicated to describe but considerably simpler to analyze.

3. Bounding the Mixing Time of Random Walks and Approximate Counting and
Sampling. If one takes a random walk in a regular graph that is connected
and not bipartite, then, regardless of the starting vertex, the distribution of
the t-th step of the walk is close to the uniform distribution over the vertices,
provided that t is large enough. It is always sufficient for t to be quadratic in the
number of vertices; in some graphs, however, the distribution is near-uniform
even when t is just poly-logarithmic. Among other applications, the study of
the “mixing time” (the time that it takes to reach the uniform distribution)
of random walks has applications to analyzing the convergence time of certain
randomized algorithms.
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The design of approximation algorithms for combinatorial counting problems, in
which one wants to count the number of solutions to a given NP-type problem,
can be reduced to the design of approximately uniform sampling in which one
wants to approximately sample from the set of such solutions. For example, the
task of approximately counting the number of perfect matchings can be reduced
to the task of sampling almost uniformly from the set of perfect matchings of a
given graph. One can design approximate sampling algorithms by starting from
an arbitrary solution and then making a series of random local changes. The
behavior of the algorithm then corresponds to performing a random walk in the
graph that has a vertex for every possible solution and an edge for each local
change that the algorithm can choose to make. Although the graph can have
an exponential number of vertices in the size of the problem that we want to
solve, it is possible for the approximate sampling algorithm to run in polynomial
time, provided that a random walk in the graph converges to uniform in time
poly-logarithmic in its size.

The study of the mixing time of random walks in graphs is thus a main analysis
tool to bound the running time of approximate sampling algorithms (and, via
reductions, of approximate counting algorithms).

These three research programs are pursued by largely disjoint communities, but share
the same mathematical core.

One direction of Cheeger’s inequality, for example, which is a basic result in algebraic
graph theory, is useful in the construction of expanders because it establishes that
good edge-expansion (the property that one is usually looking for, but that is coNP-
complete, and thus rather hard to certify) is implied by good spectral expansion
(a property that is usually easier to establish and that is in P and thus has short
certificates); the other direction of Cheeger’s inequality, that good edge expansion
implies good spectral expansion, is often used in the study of random walks, because
spectral expansion is the property that controls the mixing time of random walks,
and in some cases it is easier to prove that a graph has good spectral expansion
by proving that it has good edge expansion. Both directions are equivalent to the
statement that the nearly-linear-time spectral partitioning algorithm achieves a non-
trivial approximation for the sparsest cut problem.

In this course we will study these three research programs back-to-back, emphasizing
the connections, and providing, when necessary, a “dictionary” to translate the ways
the same mathematical facts are thought about in the three communities.
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2 Expander Graphs and Sparse Cuts

Before giving the definition of expander graph, it is helpful to consider examples of
graphs that are not expanders, in order to gain intuition about the type of “bad
examples” that the definition is designed to avoid.

Suppose that a communication network is shaped as a path, with the vertices rep-
resenting the communicating devices and the edges representing the available links.
The clearly undesirable feature of such a configuration is that the failure of a single
edge can cause the network to be disconnected, and, in particular, the failure of the
middle edge will disconnect half of the vertices from the other half.

This is a situation that can occur in reality. Most of Italian highway traffic is along
the highway that connect Milan to Naples via Bologna, Florence and Rome. The
section between Bologna and Florence goes through relatively high mountain passes,
and snow and ice can cause road closures. When this happens, it is almost impossible
to drive between Northern and Southern Italy. Closer to California, I was once driving
from Banff, a mountain resort town in Alberta which hosts a mathematical institute,
back to the US. Suddenly, traffic on Canada’s highway 1 came to a stop. People
from the other cars, after a while, got out of their cars and started hanging out and
chatting on the side of the road. We asked if there was any other way to go in case
whatever accident was ahead of us would cause a long road closure. They said no,
this is the only highway here. Thankfully we started moving again in half an hour or
so.

Now, consider a two-dimensional
√
n ×
√
n grid. The removal of an edge cannot

disconnect the graph, and the removal of a constant number of edges can only discon-
nected a constant number of vertices from the rest of the graph, but it is possible to
remove just

√
n edges, a 1/O(

√
n) fraction of the total, and have half of the vertices

be disconnected from the other half.

A k-dimensional hypercube with n = 2k is considerably better connected than a grid,
although it is still possible to remove a vanishingly small fraction of edges (the edges
of a “dimension cut,” which are a 1/k = 1/ log2 n fraction of the total number of
edges) and disconnect half of the vertices from the other half.

Clearly, the most reliable network layout is the clique; in a clique, if an adversary
wants to disconnect a p fraction of vertices from the rest of the graph, he has to
remove at least a p · (1− p) fraction of edges from the graph.

This property of the clique will be our “gold standard” for reliability. The expansion
and the sparsest cut parameters of a graph measure how worse a graph is compared
with a clique from this point.

Definition 1 (Sparsest Cut) Let G = (V,E) be a graph and let (S, V − S) be a
partition of the vertices (a cut). Then the (normalized) sparsity of the cut is
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σ(S) :=
E(S, V − S)

|E|
·
(
|S| · |V − S|
|V |2/2

)−1
where E(S, V − S) is the number of edges in E that have one endpoint in S and one
endpoint in V − S.

The sparsest cut problem is, given a graph, to find the set of minimal sparsity. The
sparsity of a graph G = (V,E) is

σ(G) := min
S⊆V :S 6=∅,S 6=V

σ(S)

That is, we are looking at the ratio between the fraction of edges that need to be
removed in order to disconnect S from V −S and the fraction of pairs of vertices that
would be so disconnected.

It is more common to define the sparsity as

E(S, V − S)

|S| · |V − S|

without the normalizing factor (V 2/2|E|); the normalized definition used above yields
simpler formulas in some of the applications that we will discuss later.

Note that if G is a d-regular graph, then

σ(S) :=
E(S, V − S)

d
|V | · |S| · |V − S|

In a d-regular graph, the edge expansion of a set of vertices S ⊆ V is the related
quantity

φ(S) :=
E(S, V − S)

d · |S|

in which we look at the ratio between the number of edges between S and V −S and
the obvious upper bound given by the total number of edges incident S.

The edge expansion φ(G) of a graph is

φ(G) := min
S:|S|≤ |V |

2

φ(S)

the minimum of φ(S) over all partitions (S, V − S), where |S| ≤ |V − S|.
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(It is common to define the edge expansion without the normalizing factor of d in the
denominator.)

We note that for every regular graph G we have that, for every set S such that
|S| ≤ |V |/2,

1

2
σ(S) ≤ φ(S) ≤ σ(S)

and we have σ(S) = σ(V − S), hence

1

2
σ(G) ≤ φ(G) ≤ ·σ(G)

A family of constant degree expanders is a family of (multi-)graphs {Gn}n≥d such
that each graph Gn is a d-regular graph with n vertices and such that there is an
absolute constant φ > 0 such that φ(Gn) ≥ φ for every n.

Constant-degree graphs of constant expansion are sparse graphs with exceptionally
good connectivity properties. For example, we have the following observation.

Lemma 2 Let G = (V,E) be a regular graph of expansion φ. Then, after an ε < φ
fraction of the edges are adversarially removed, the graph has a connected component
that spans at least 1− ε/2φ fraction of the vertices.

Proof: Let d be the degree of G, and let E ′ ⊆ E be an arbitrary subset of ≤
ε|E| = ε · d · |V |/2 edges. Let C1, . . . , Cm be the connected components of the graph
(V,E − E ′), ordered so that |C1| ≥ |C2| ≥ · · · ≥ |Cm|. We want to prove that
|C1| ≥ |V | · (1− 2ε/φ). We have

|E ′| ≥ 1

2

∑
i 6=j

E(Ci, Cj) =
1

2

∑
i

E(Ci, V − Ci)

If |C1| ≤ |V |/2, then we have

|E ′| ≥ 1

2

∑
i

d · φ · |Ci| =
1

2
· d · φ · |V |

but this is impossible if φ > ε.

If |C1| ≥ |V |/2, then define S := C2 ∪ · · · ∪ Cm. We have

|E ′| ≥ E(C1, S) ≥ d · φ · |S|

which implies that |S| ≤ ε
2φ
· |V | and so C1 ≥

(
1− ε

2φ

)
· |V |. �
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In words, this means that, in a d-regular expander, the removal of k edges can cause
at most O(k/d) vertices to be disconnected from the remaining “giant component.”
Clearly, it is always possible to disconnect k/d vertices after removing k edges, so the
reliability of an expander is essentially best possible.

3 Eigenvalues and Eigenvectors

Spectral graph theory studies how the eigenvalues of the adjacency matrix of a graph,
which are purely algebraic quantities, relate to combinatorial properties of the graph.

We begin with a brief review of linear algebra.

If x = a + ib is a complex number, then we let x̄ = a − ib denote its conjugate.
If M ∈ Cm×n is a matrix, then M∗ denotes the conjugate transpose of M , that is,
(M∗)i,j = Mj,i. If x,y ∈ Cn are two vectors, then their inner product is defined as

〈x,y〉 := x∗y =
∑
i

xi · yi (1)

Notice that, by definition, we have 〈x,y〉 = (〈x,y〉)∗ and 〈x,x〉 = ||x||2.
If M ∈ Cn×n is a square matrix, λ ∈ C is a scalar, x ∈ Cn − {0} is a non-zero vector
and we have

Mx = λx (2)

then we say that λ is an eigenvalue of M and that x is eigenvector of M corresponding
to the eigenvalue λ.

When (2) is satisfied, then we equivalently have

(M − λI) · x = 0

for a non-zero vector x, which is equivalent to

det(M − λI) = 0 (3)

For a fixed matrix M , the function λ → det(M − λI) is a univariate polynomial
of degree n in λ and so, over the complex numbers, the equation (3) has exactly n
solutions, counting multiplicities.

If G = (V,E) is a graph, then we will be interested in the adjacency matrix A of G,
that is the matrix such that Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. If G is a
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multigraph or a weighted graph, then Aij is equal to the number of edges between
(i, j), or the weight of the edge (i, j), respectively.

The adjacency matrix of an undirected graph is symmetric, and this implies that its
eigenvalues are all real.

Definition 3 A matrix M ∈ Cn×n is Hermitian if M = M∗.

Note that a real symmetric matrix is always Hermitian.

Lemma 4 If M is Hermitian, then all the eigenvalues of M are real.

Proof: Let M be an Hermitian matrix and let λ be a scalar and x be a non-zero
vector such that Mx = λx. We will show that λ = λ∗, which implies that λ is a real
number.

We first see that

〈Mx,x〉

=
∑
i

∑
j

M∗
ijx
∗
jxi

=
∑
i

∑
j

Mjixix
∗
j

= 〈x,Mx〉

where we use the fact that M is Hermitian. Then we note that

〈Mx,x〉 = 〈λx,x〉 = λ∗||x||2

and

〈x,Mx〉 = 〈x, λx〉 = λ||x||2

so that λ = λ∗. �

We also note the following useful fact.

Fact 5 If M is an Hermitian matrix, and x and y are eigenvectors of different eigen-
values, then x and y are orthogonal.
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Proof: Let x be an eigenvector λ and y be an eigenvector of λ′, then, from the fact
that M is Hermitian, we get

〈Mx,y〉 = (Mx)∗y = x∗M∗y = x∗My = 〈x,My〉

but

〈Mx,y〉 = λ · 〈x,y〉
and

〈x,My〉 = λ′ · 〈x,y〉
so that

(λ− λ′) · 〈x,y〉 = 0

which implies that 〈x,y〉 = 0, that is, that x and y are orthogonal. �

We will be interested in relating combinatorial properties of a graph G, such as
connectivity and bipartiteness, with the values of the eigenvalues of the adjacency
matrix of G.

A step in this direction is to see the problem of computing the eigenvalues of a real
symmetric matrix as the solution to an optimization problem.

Theorem 6 (Variational Characterization of Eigenvalues) Let M ∈ Rn×n be
a real symmetric matrix, and λ1 ≤ . . . ≤ λn be its real eigenvalues, counted with mul-
tiplicities and sorted in nondecreasing order. Let x1, · · · ,xk, k < n, be orthonormal
vectors such that Mxi = λixi for i = 1, . . . , k. Then

λk+1 = min
x∈Rn−{0}:x⊥x1,...,x⊥xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.

In particular, Theorem 6 implies that

λ1 = min
x∈Rn−{0}

xTMx

xTx

and, if we call x1 a minimizer of the above expression, then

λ2 = min
x∈Rn−{0}:x⊥x1

xTMx

xTx

and a minimizer x2 of the above expression is an eigenvector of x1, and so on.

In order to prove Theorem 6, we first prove the following result.
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Lemma 7 Let Let M ∈ Rn×n be a real symmetric matrix, and let x1, . . . ,xk, k < n
be orthogonal eigenvectors of M . Then there is an eigenvector xk+1 of M that is
orthogonal to x1, . . . ,xk.

Proof: Let V be the (n−k)-dimensional subspace of Rn that contains all the vectors
orthogonal to x1, . . . ,xk. We claim that for every vector x ∈ V we also have Mx ∈ V .
Indeed, for every i, the inner product of Mx and xi is

〈xi,Mx〉 = xTi Mx = (MTxi)
Tx = (Mxi)

Tx = λix
T
i x = λ · 〈x1,x〉 = 0

Let B ∈ Rn×(n−k) be the matrix that computes a bijective map from Rn−k to V .
(If b1, . . . ,bn−k are an orthonormal for basis for V , then B is just the matrix whose
columns are the vectors bi.) Let also B′ ∈ R(n−1)×n be the matrix such that, for every
y ∈ V , B′y is the (n − k)-dimensional vector such that BB′y = y. (Let B′ = BT

where B is as described above.) Let λ be a real eigenvalue of the real symmetric
matrix

M ′ := B′MB ∈ R(n−k)×(n−k)

and y be a real eigenvector of M ′.

Then we have the equation

B′MBx = λy

and so
BB′MBy = λBy

Since By is orthogonal to x1, . . . ,xk, it follows that MBy is also orthogonal to
x1, . . . ,xk, and so

BB′MBy = MBy ,

which means that we have
MBy = λBy

and, defining xk+1 := By, we have

Mxk+1 = λBxk+1

�

We note that Lemma 7 has the following important consequence.

Corollary 8 (Spectral Theorem) Let M ∈ Rn×n be an real symmetric matrix,
and λ1, . . . , λn be its real eigenvalues, with multiplicities; then there are orthonormal
vectors x1, . . . ,xn, xi ∈ Rn such that xi is an eigenvector of λi.
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We are now ready to prove Theorem 6.

Proof:[Of Theorem 6] By repeated applications of Lemma 7, we find n−k orthogonal
eigenvectors which are also orthogonal to x1, . . . ,xk. The eigenvalues of this system
of n orthogonal eigenvectors must include all the eigenvalues of M , because if there
was any other eigenvalue, its eigenvector would be orthogonal to our n vectors, which
is impossible. Let us call the additional n − k vectors xk+1, . . . ,xn, where xi is an
eigenvector of λi. Now consider the minimization problem

min
x∈Rn−{0}:x⊥x1,...,x⊥xk

xTMx

xTx

The solution x := xk+1 is feasible, and it has cost λk+1, so the minimum is at most
λk+1.

Consider now an arbitrary feasible solution x. We can write

x = ak+1xk+1 + · · ·+ anxn

and we see that the cost of such a solution is∑n
i=k+1 λia

2
i∑n

i=k+1 a
2
i

≥ λk+1 ·
∑n

i=k+1 a
2
i∑n

i=k+1 a
2
i

and so the minimum is also at least λk+1. Notice also that if x is a minimizer, that
is, if the cost of x is λk+1, then we must ai = 0 for every i such that λi > λk+1, which
means that x is a linear combination of eigenvectors of λk+1, and so it is itself an
eigenvector of λk+1. �

Sometimes it will be helpful to use the following variant of the variational character-
ization of eigenvalues.

Corollary 9 Let M ∈ Rn×n be a real symmetric matrix, and λ1 ≤ λ2 ≤ · · · ≤ λn its
eigenvalues, counted with multiplicities and sorted in nondecreasing order. Then

λk = min
V k−dimensional subspace of Rn

max
x∈V−{0}

xTMx

xTx

4 The Basics of Spectral Graph Theory

From the discussion so far, we have that if A is the adjacency matrix of an undirected
graph then it has n real eigenvalues, counting multiplicities of the number of solutions
to det(A− λI) = 0.
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If G is a d-regular graph, then instead of working with the adjacency matrix of G
it is somewhat more convenient to work with the normalized Laplacian matrix of G,
which is defined as L := I − 1

d
· A.

In the rest of this section we shall prove the following relations between the eigenvalues
of L and certain purely combinatorial properties of G.

Theorem 10 Let G be a d-regular undirected graph, and L = I − 1
d
· A be its nor-

malized Laplacian matrix. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the real eigenvalues of L with
multiplicities. Then

1. λ1 = 0 and λn ≤ 2.

2. λk = 0 if and only if G has at least k connected components.

3. λn = 2 if and only if at least one of the connected components of G is bipartite.

Note that the first two properties imply that the multiplicity of 0 as an eigenvalue is
precisely the number of connected components of G.

4.1 Proof of Theorem 10

We will make repeated use of the following identity, whose proof is immediate: if L
is the normalized Laplacian matrix of a d-regular graph G, and x is any vector, then

xTLx =
1

d
·
∑
{u,v}∈E

(xu − xv)2 (4)

and so

λ1 = min
x∈Rn−{0}:

xTLx

xTx
≥ 0

If we take 1 = (1, . . . , 1) to be the all-one vector, we see that 1TL1 = 0, and so 0 is
the smallest eigenvalue of L, with 1 being one of the vectors in the eigenspace of 1.

We also have the following formula for λk:

λk = min
S k−dimensional subspace of Rn

max
x∈S−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

So, if λk = 0, there must exist a k-dimensional space S such that for every x ∈ S we
have ∑

{u,v}∈E

(xu − xv)2 = 0 ,
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but this means that, for every x, and for every edge (u, v) ∈ E of positive weight,
we have xu = xv, and so xu = xv for every u, v which are in the same connected
component. This means that each x ∈ V must be constant within each connected
component of G, and so the dimension of V can be at most the number of connected
components of G, meaning that G has at least k connected components.

Conversely, if G has at least k connected components, we can let S be the space of
vectors that are constant within each component, and S is a space of dimension at
least k such that for every element x of S we have∑

{u,v}∈E

(xu − xv)2 = 0

meaning that S is a witness of the fact that λk = 0.

Finally, to study λn, we first note that we have the formula

λn = max
x∈Rn−{0}

xTLx

xTx

which we can prove by using the variational characterization of the eigenvalues of −L
and noting that −λn is the smallest eigenvalue of −L.

We also observe that for every vector x ∈ Rn we have

2− xTLx =
1

d

∑
{u,v}∈E

(xu + xv)
2

and so

λn ≤ 2

and if λn = 2 then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0

which means that xu = −xv for every edge (u, v) ∈ E.

Let v be a vertex such that xv = a 6= 0, and define the sets A := {v : xv = a},
B := {j : xv = −a} and R = {v : xv 6= ±a}. The set A ∪ B is disconnected from
the rest of the graph, because otherwise an edge with an endpoint in A ∪ B and an
endpoint in R would give a positive contribution to

∑
u,v Au,v(xu +xv)

2; furthermore,
every edge incident on a vertex on A must have the other endpoint in B, and vice
versa. Thus, A∪B is a connected component, or a collection of connected components,
of G which is bipartite, with the bipartition A,B.
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