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Lecture 3

In which we analyze the power method to approximate eigenvalues and eigenvectors,
and we describe some more algorithmic applications of spectral graph theory.1

1 The power method

Last week, we showed that, if G = (V,E) is a d-regular graph, and L is its normalized
Laplacian matrix with eigenvalues 0 = λ1 ≤ λ2 . . . ≤ λn, given an eigenvector of λ2,
the algorithm SpectralPartition finds, in nearly-linear time O(|E|+ |V | log |V |), a cut
(S, V − S) such that φ(S) ≤ 2

√
φ(G).

More generally, if, instead of being given an eigenvector x such that Lx = λ2x, we are
given a vector x ⊥ 1 such that xTLx ≤ (λ2 + ε)xTx, then the algorithm finds a cut
such that φ(S) ≤

√
4φ(G) + 2ε. In this lecture we describe and analyze an algorithm

that computes such a vector using O((|V |+ |E|) · 1
ε
· log |V |

ε
) arithmetic operations.

A symmetric matrix is positive semi-definite (abbreviated PSD) if all its eigenvalues
are nonnegative. We begin by describing an algorithm that approximates the largest
eigenvalue of a given symmetric PSD matrix. This might not seem to help very much
because because we want to compute the second smallest, not the largest, eigenvalue.
We will see, however, that the algorithm is easily modified to accomplish what we
want.

1.1 The Power Method to Approximate the Largest Eigen-
value

The algorithm works as follows
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Algorithm Power

Input: PSD matrix M , parameter k

• Pick uniformly at random x0 ∼ {−1, 1}n

• for i := 1 to k
xi := M · xi−1

• return xk

That is, the algorithm simply picks uniformly at random a vector x with ±1 coordi-
nates, and outputs Mkx.

Note that the algorithm performs O(k · (n + m)) arithmetic operations, where m is
the number of non-zero entries of the matrix M .

Theorem 1 For every PSD matrix M , positive integer k and parameter ε > 0, with
probability ≥ 3/16 over the choice of x0, the algorithm Power outputs a vector xk
such that

xTkMxk
xTk xk

≥ λ1 · (1− ε) ·
1

1 + 4n(1− ε)2k

where λ1 is the largest eigenvalue of M .

Note that, in particular, we can have k = O(log n/ε) and
xTkMxk
xTk xk

≥ (1−O(ε)) · λ1.

Let λ1 ≥ · · ·λn be the eigenvalues of M , with multiplicities, and v1, . . . ,vn be a
system of orthonormal eigenvectors such that Mvi = λivi. Theorem 1 is implied by
the following two lemmas

Lemma 2 Let v ∈ Rn be a vector such that ||v|| = 1. Sample uniformly x ∼
{−1, 1}n. Then

P
[
|〈x,v〉| ≥ 1

2

]
≥ 3

16

Lemma 3 Let x ∈ Rn be a vector such that |〈x,v1〉| ≥ 1
2
. Then, for every positive

integer t and positive ε > 0, if we define y := Mkx, we have

yTMy

yTy
≥ λ1 · (1− ε) ·

1

1 + 4||x||2(1− ε)2k
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It remains to prove the two lemmas.

Proof: (Of Lemma 2) Let v = (v1, . . . , vn). The inner product 〈x,v〉 is the random
variable

S :=
∑
i

xivi

Let us compute the first, second, and fourth moment of S.

ES = 0

ES2 =
∑
i

v2i = 1

ES4 = 3

(∑
i

v2i

)
− 2

∑
i

v4i ≤ 3

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random
variable with finite variance, then, for every 0 ≤ δ ≤ 1, we have

P[Z ≥ δ EZ] ≥ (1− δ)2 · (EZ)2

EZ2
(1)

which follows by noting that

EZ = E[Z · 1Z<δ EZ ] + E[Z · 1Z≥δ EZ ] ,

that

E[Z · 1Z<δ EZ ] ≤ δ EZ ,

and that

E[Z · 1Z≥δ EZ ] ≤
√
EZ2 ·

√
E 1Z≥δ EZ

=
√
EZ2

√
P[Z ≥ δ EZ]

We apply the Paley-Zygmund inequality to the case Z = S2 and δ = 1/4, and we
derive

P
[
S2 ≥ 1

4

]
≥
(

3

4

)2

· 1

3
=

3

16
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Remark 4 The proof of Lemma 2 works even if x ∼ {−1, 1}n is selected according to
a 4-wise independent distribution. This means that the algorithm can be derandomized
in polynomial time.

Proof: (Of Lemma 3) Let us write x as a linear combination of the eigenvectors

x = a1v1 + · · ·+ anvn

where the coefficients can be computed as ai = 〈x,vi〉. Note that, by assumption,
|a1| ≥ .5, and that, by orthonormality of the eigenvectors, ||x||2 =

∑
i a

2
i .

We have
y = a1λ

k
1v1 + · · ·+ anλ

k
nvn

and so

yTMy =
∑
i

a2iλ
2k+1
i

and
yTy =

∑
i

a2iλ
2k
i

We need to prove a lower bound to the ratio of the above two quantities. We will
compute a lower bound to the numerator and an upper bound to the denominator in
terms of the same parameter.

Let ` be the number of eigenvalues larger than λ1 · (1 − ε). Then, recalling that the
eigenvalues are sorted in non-increasing order, we have

yTMy ≥
∑̀
i=1

a2iλ
2k+1
i ≥ λ1(1− ε)

∑̀
i=1

a2iλ
2k
i

We also see that

n∑
i=`+1

a2iλ
2k
i

≤ λ2k1 · (1− ε)2k
n∑

i=`+1

a2i

≤ λ2k1 · (1− ε)2k · ||x||2
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≤ 4a21λ
2k
1 (1− ε)2t||x||2

≤ 4||x||2(1− ε)2k
∑̀
i=1

a2iλ
2k
i

So we have

yTy ≤ (1 + 4||x||2(1− ε)2k) ·
∑̀
i=1

a2i

giving

yTMy

yTy
≥ λ1 · (1− ε) ·

1

1 + 4||x||2(1− ε)2k

�

Remark 5 Where did we use the assumption that M is positive semidefinite? What
happens if we apply this algorithm to the adjacency matrix of a bipartite graph?

1.2 Approximating the Second Largest Eigenvalue

Suppose now that we are interested in finding the second largest eigenvalue of a given
PSD matrix M . If M has eigenvalues λ1 ≥ λ2 ≥ · · ·λn, and we know the eigenvector
v1 of λ2, then M is a PSD linear map from the orthogonal space to v1 to itself, and λ2
is the largest eigenvalue of this linear map. We can then run the previous algorithm
on this linear map.

Algorithm Power2

Input: PSD matrix M , vector v1 parameter k

• Pick uniformly at random x ∼ {−1, 1}n

• x0 := x− v1 · 〈x,v1〉

• for i := 1 to k
xi := M · xi−1

• return xk

If v1, . . . ,vn is an orthonormal basis of eigenvectors for the eigenvalues λ1 ≥ · · · ≥ λn
of M , then, at the beginning, we pick a random vector

x = a1v1 + a2v2 + · · · anvn
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that, with probability at least 3/16, satisfies |a2| ≥ 1/2. (Cf. Lemma 2.) Then we
compute x0, which is the projection of x on the subspace orthogonal to v1, that is

x0 = a2v2 + · · · anvn

Note that ||x||2 = n and that ||x0||2 ≤ n.

The output is the vector xk

xk = a2λ
k
2v2 + · · · anλknvn

If we apply Lemma 3 to subspace orthogonal to v1, we see that when |a2| ≥ 1/2 we
have that, for every 0 < ε < 1,

xTkMxk
xTk xk

≥ λ2 · (1− ε) ·
1

4n(1− ε)2k

We have thus established the following analysis.

Theorem 6 For every PSD matrix M , positive integer k and parameter ε > 0, if v1

is a length-1 eigenvector of the largest eigenvalue of M , then with probability ≥ 3/16
over the choice of x0, the algorithm Power2 outputs a vector xk ⊥ v1 such that

xTkMxk
xTk xk

≥ λ2 · (1− ε) ·
1

1 + 4n(1− ε)2k

where λ2 is the second largest eigenvalue of M , counting multiplicities.

1.3 The Second Smallest Eigenvalue of the Laplacian

Finally, we come to the case in which we want to compute the second smallest eigen-
value of the normalized Laplacian matrix L = I− 1

d
A of a d-regular graph G = (V,E),

where A is the adjacency matrix of G.

Consider the matrix M := 2I − L = I + 1
d
A. Then if 0 = λ1 ≤ . . . ≤ λn ≤ 2 are the

eigenvalues of L, we have that

2 = 2− λ1 ≥ 2− λ2 ≥ · · · ≥ 2− λn ≥ 0

are the eigenvalues of M , and that M is PSD. M and L have the same eigenvectors,
and so v1 = 1√

n
(1, . . . , 1) is a length-1 eigenvector of the largest eigenvalue of M .

By running algorithm Power2, we can find a vector x such that
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xTMxT ≥ (1− ε) · (2− λ2) · xTx

and
xTMxT = 2xTx− xTLx

so, rearranging, we have
xTLx

xTx
≤ λ2 + 2ε

If we want to compute a vector whose Rayleigh quotient is, say, at most 2λ2, then
the running time will be Õ((|V | + |E|)/λ2), because we need to set ε = λ2/2, which
is not nearly linear in the size of the graph if λ2 is, say O(1/|V |).
For a running time that is nearly linear in n for all values of λ2, one can, instead,
apply the power method to the pseudoinverse L+ of L. (Assuming that the graph is
connected, L+x is the unique vector y such that Ly = x, if x ⊥ (1, . . . , 1), and L+x =
0 if x is parallel to (1, . . . , 1).) This is because L+ has eigenvalues 0, 1/λ2, . . . , 1/λn,
and so L+ is PSD and 1/λ2 is its largest eigenvalue.

Although computing L+ is not known to be doable in nearly linear time, there are
nearly linear time algorithms that, given x, solve in y the linear system Ly = x,
and this is the same as computing the product L+x, which is enough to implement
algorithm Power applied to L+.

In time O((V + |E|) · (log |V |/ε)O(1)), we can find a vector y such that y = (L+)kx,
where x is a random vector in {−1, 1}n, shifted to be orthogonal to (1, . . . , 1) and
k = O(log |V |/ε). What is the Rayleigh quotient of such a vector with respect to L?

Let v1, . . . ,vn be a basis of orthonormal eigenvectors for L and L+. If 0 = λ1 ≤ λ2 ≤
· · · ≤ λn are the eigenvalues of L, then we have

Lv1 = L+v1 = 0

and, for i = 1, . . . , n, we have

Lvi = λi L+vi =
1

λi

Write x = a2v2 + · · · anvn, where
∑

i a
2
i ≤ n, and ssume that, as happens with

probability at least 3/16, we have a22 ≥ 1
4
. Then

y =
n∑
i=2

ai
1

λki

and the Rayleigh quotient of y with respect to L is
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yTLy

yTy
=

∑
i a

2
i

1

λ2k−1
i∑

i a
2
i

1
λ2ki

and the analysis proceeds similarly to the analysis of the previous section. If we let `
be the index such that λ` ≤ (1+ε)·λ2 ≤ λ`+1 then we can upper bound the numerator
as

∑
i

a2i
1

λ2k−1i

≤
∑
i≤`

a2i
1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

∑
i>`

a2i

≤
∑
i≤`

a2i
1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

· n

≤
∑
i≤`

a2i
1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

· 4na22

≤
(

1 +
4n

(1 + ε)2k−1

)
·
∑
i≤`

a2i
1

λ2k−1i

and we can lower bound the denominator as

∑
i

a2i
1

λ2ki
≥
∑
i≤`

a2i
1

λ2ki

≥ 1

(1 + ε)λ2
·
∑
i≤`

a2i
1

λ2k−1i

and the Rayleigh quotient is

yTLy

yTy
≤ λ2 · (1 + ε) ·

(
1 +

4n

(1 + ε)2k−1

)
≤ (1 + 2ε) · λ2

when k = O
(
1
ε

log n
ε

)
.

An O((|V |+ |E|) · (log |V |)O(1)) algorithm to solve in y the linear system Ly = x was
first developed by Spielman and Teng. Faster algorithms (with a lower exponent in
the (log |V |)O(1) part of the running time, and smaller constants) were later developed
by Koutis, Miller and Peng, and, very recently, by Kelner, Orecchia, Sidford, and Zhu.
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2 Other applications of spectral graph theory

2.1 Spectral graph theory in irregular graphs

Let G = (V,E) be an undirected graph in which every vertex has positive degree
and A be the adjacency matrix of G. We want to define a Laplacian matrix L and
a Rayleigh quotient such that the k-th eigenvalue of L is the minimum over all k-
dimensional spaces of the maximum Rayleigh quotient in the space, and we want the
conductance of a set to be the same as the Rayleigh quotient of the indicator vector
of the set. All the facts that we have proved in the regular case essentially reduce to
these two properties of the Laplacian and the Rayleigh quotient.

Let dv be the degree of vertex v in G. We define the Rayleigh quotient of a vector
x ∈ RV as

RG(x) :=

∑
{u,v}∈E |xu − xv|2∑

v dvx
2
v

Let D be the diagonal matrix of degrees such that Du,v = 0 if u 6= v and Dv,v = dv.
Then define the Laplacian of G as

LG := I −D−1/2AD−1/2

Note that in a d-regular graph we have D = dI and LG = I − 1
d
A, which is the

standard definition.

Since L = LG is a real symmetric matrix, the k-th smallest eigenvalue of L is

λk = min
k−dimensional S

max
x∈S

xTLx

xTx

Now let us do the change of variable y← D−1/2x. We have

λk = min
k−dimensional S′

max
y∈S′

yTD1/2LD1/2y

yTDy

In the numerator, yTDy =
∑

v dvy
2
v , and in the denominator a simple calculation

shows

yTD1/2LD1/2y = yT (D − A)y =
∑
{u,v}

|yv − yu|2

so indeed
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λk = min
k−dimensional S

max
y∈S

RG(y)

For two vectors y, z, define the inner product

〈y, z〉G :=
∑
v

dvyvzv

Then we can prove that

λ2 = min
y:〈y,(1,...,1)〉G=0

RG(y)

With these definitions and observations in place, it is now possible to repeat the
proof of Cheeger’s inequality step by step (replacing the condition

∑
v xv = 0 with∑

i dvxv = 0, adjusting the definition of Rayleigh quotient, etc.) and prove that if λ2
is the second smallest eigenvalue of the Laplacian of an irregular graph G, and φ(G)
is the conductance of G, then

λ2
2
≤ φ(G) ≤

√
2λ2

2.2 Higher-order Cheeger inequality

The Cheeger inequality gives a “robust” version of the fact that λ2 = 0 if and only if
G is disconnected. It is possible to also give a robust version of the fact that λk = 0
if and only if G has at least k connected components. We will restrict the discussion
to regular graphs.

For a size parameter s ≤ |V |/2, denote the size-s small-set expansion of a graph

SSEs(G) := min
S⊆V : |S|≤s

φ(S)

So that SSEn
2
(G) = φ(G). This is an interesting optimization problem, because in

many settings in which non-expanding sets correspond to clusters, it is more inter-
esting to find small non-expanding sets (and, possibly, remove them and iterate to
find more) than to find large ones. It has been studied very intensely in the past five
years because of its connection with the Unique Games Conjecture, which is in turn
one of the key open problems in complexity theory.

If λk = 0, then we know that are at least k connected components, and, in particular,
there is a set S ⊆ V such that φ(S) = 0 and |S| ≤ n

k
, meaning that SSEn

k
= 0. By

analogy with the Cheeger inequality, we may look for a robust version of this fact,
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of the form SSEn
k
≤ O(

√
λk). Unfortunately there are counterexamples, but Arora,

Barak and Steurer have proved that, for every δ,

SSEn1+δ

k

≤ O

(√
λk
δ

)

To formulate a “higher-order” version of the Cheeger inequality, we need to define a
quantity that generalize expansion in a different way. For an integer parameter k ≥ 2,
define “order k expansion” as

φk(G) = min
S1,...Sk⊆V disjoint

max
i=1,...,k

φ(Si)

Note that φ2(G) = φ(G). Then Lee, Oveis-Gharan and Trevisan prove that

λk
2
≤ φk(G) ≤ O(k2) ·

√
λk

and

φ.9·k(G) ≤ O(
√
λk · log k)

(which was also proved by Louis, Raghavendra, Tetali and Vempala). The upper
bounds are algorithmic, and given k orthogonal vectors all of Rayleigh quotient at
most λ, there are efficient algorithms that find at least k disjoint sets each of expansion
at most O(k2

√
λ) and at least .9·k disjoint sets each of expansion at most O(

√
λ log k).

2.3 A Cheeger-type inequality for λn

We proved that λn = 2 if and only if G has a bipartite connected component. What
happens when λn is, say, 1.999?

We can define a “bipartite” version of expansion as follows:

β(G) := min
x∈{−1,0,1}V

∑
{u,v}∈E |xu + xv|∑

v dv|xv|

The above quantity has the following combinatorial interpretation: take a set S of
vertices, and a partition of S into two disjoint sets A,B. Then define

β(S,A,B) :=
2E(A) + 2E(B) + 2E(S, V − S)

vol(S)
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where E(A) is the number of edges entirely contained in A, and E(S, V − S) is the
number of edges with one endpoint in S and one endpoint in V −S. We can think of
β(S,A,B) as measuring what fraction of the edges incident on S we need to delete
in order to make S disconnected from the rest of the graph and A,B be a bipartition
of the subgraph induced by S. In other words, it measure how close S is to being a
bipartite connected component. Then we see that

β(G) = min
S⊆V, A,B partition of S

β(S,A,B)

Trevisan proves that

1

2
· (2− λn) ≤ β(G) ≤

√
2 · (2− λn)
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