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Lecture 4

In which we introduce the Leighton-Rao linear programming relaxation of the non-
uniform sparsest cut problem, and we show how to round its solutions via a theorem
of Bourgain about embedding arbitrary metric spaces into `1.
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1 The Non-uniform sparsest cut problem

Let G = (V,E) be an undirected graph. Unlike past lectures, we will not need to
assume that G is regular. Recall that, for a subset S ⊆ V , we defined the sparsity of
the partition (S, V − S) as

σG(S) :=

1
|E| · E(S, V − S)
2
V 2 · |S| · |V − S|

which is the ratio between the fraction of edges that are cut by (S, V − S) and the
fraction of pairs of vertices that are disconnected by the removal of those edges.

More generally, give two (possibly weighted) undirected graphs G = (V,EG) and
H = (V,EH) over the same set of vertices, we define the non-uniform sparsity of
S ⊆ V as

σG,H(S) :=
|EH |
|EG|

· EG(S, V − S)

EH(S, V − S)

where we denote by |EG| the total weight of the edges of G, and by EG(S, V − S)
the total weight of the edges of G that have one endpoint in S and one endpoint in
V − S.
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For graphs G,H with the same vertex set V , the non-uniform sparsest cut problem
is to find

σ(G,H) := min
S⊆V

σG,H(S)

Notice that σG(S) is the same as σG,H where H is a clique in which every vertex has
a self-loop of weight 1/2.

If dv is the degree of v in G, then define H to be the graph in which the edge {u, v}
has weight du · dv. Then, |EG| = volG(V )/2, |EH | = 1

2

∑
u ·(
∑

v dudv) = 1
2
(
∑

v dv)
2,

EH(S, V − S) = volG(S) · volG(V − S), and the sparsity of S is

σG,H(S) =

(∑
v

dv

)
· E(S, S̄)

volG(S) · volG(V − S)

and if S is such that vol(S) ≤ vol(V − S), then φ(G) ≤ σG,H(S) ≤ 2φ(G).

Thus the non-uniform sparsest cut problem generalizes the (uniform) sparsest cut
problem that we described before, and, for a proper choice of H, is a 2-approximation
of the conductance of G.

Notice also that if H is a graph that has only the one edge {s, t}, then σ(G,H) is the
(s, t)-min-cut problem for the graph G.

2 A Linear Programming relaxation

Another way to formulate the sparsest cut problem is

σ(G,H) :=
|EH |
|EG|

· min
x∈{0,1}n

∑
{u,v}Gu,v|xu − xv|∑
{u,v}Hu,v|xu − xv|

where Gu,v is the weight of the edge {u, v} in G and Hu,v is the weight of the edge
{u, v} in H.

The observation that led us to see λ2 as the optimum of a continuous relaxation of
σ(G) was to observe that, for a boolean vector x, |xu − xv| = |xu − xv|2, and then
relax the problem by allowing arbitrary vectors x instead of just boolean vectors.

The Leighton-Rao relaxation of sparsest cut is obtained using, instead, the following
observation: if, for a set S, x is the boolean indicator vector of S and we define
dS(u, v) := |xu − xv|, then dS(·, ·) defines a semi-metric over the set V , because dS is
symmetric, dS(v, v) = 0, and the triangle inequality holds. So we could think about
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allowing arbitrary semi-metrics in the expression for σ, and define

LR(G,H) := min
d : V × V → R
d semi-metric

|EH |
|EG|

·
∑
{u,v}Gu,vd(u, v)∑
{u,v}Hu,vd(u, v)

(1)

This might seem like such a broad relaxation that there could be graphs on which
LR(G,H) bears no connection to σ(G,H). Instead, we will prove the fairly good
estimate

LR(G,H) ≤ φ(G,H) ≤ O(log |V |) · LR(G,H) (2)

Furthermore, we will show that LR(G,H), and an optimal solution d(·, ·) can be
computed in polynomial time, and the second inequality above has a constructive
proof, from which we derive a polynomial time O(log |V |)-approximate algorithm for
sparsest cut.

3 Formulating the Leighton-Rao Relaxation as a

Linear Program

The value LR(G,H) and an optimal d(·, ·) can be computed in polynomial time by
solving the following linear program

minimize
∑
{u,v}Gu,vdu,v

subject to ∑
{u,v}Hu,vdu,v = |EH |

|EG|
du,w ≤ du,w + dw,v ∀u, v, w ∈ V
du,v ≥ 0 ∀u, v ∈ V

(3)

that has a variable du,v for every unordered pair of distinct vertices {u, v}. Clearly,
every solution to the linear program (3) is also a solution to the right-hand side of
the definition (1) of the Leighton-Rao parameter, with the same cost. Also every

semi-metric can be normalized so that
∑
{u,v}Hu,vd(u, v) = |EH |

|EG|
by multiplying every

distance by a fixed constant, and the normalization does not change the value of the
right-hand side of (1); after the normalization, the semimetric is a feasible solution
to the linear program (3), with the same cost.

In the rest of this lecture, we will show how to round a solution to (3) into a cut,
achieving the logarithmic approximation promised in (2).
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4 An L1 Relaxation of Sparsest Cut

In the Leighton-Rao relaxation, we relax distance functions of the form d(u, v) =
|xu−xv|, where x is a boolean vector, to completely arbitrary distance functions. Let
us consider an intermediate relaxation, in which we allow distance functions that can
be realized by an embedding of the vertices in an `1 space.

Recall that, for a vector x ∈ Rn, its `1 norm is defined as ||x||1 :=
∑

i |xi|, and that
this norm makes Rn into a metric space with the `1 distance function

||x− y||1 =
∑
i

|xi − yi|

The distance function d(u, v) = |xu−xv| is an example of a distance function that can
be realized by mapping each vertex to a real vector, and then defining the distance
between two vertices as the `1 norm of the respective vectors. Of course it is an
extremely restrictive special case, in which the dimension of the vectors is one, and
in which every vertex is actually mapping to either zero or one. Let us consider the
relaxation of sparsest cut to arbitrary `1 mappings, and define

σ′(G,H) := inf
m,f :V→Rm

|EH |
|EG|

·
∑
{u,v}Gu,v · ||f(u)− f(v)||1∑
{u,v}Hu,v · ||f(u)− f(v)||1

This may seem like another very broad relaxation of sparsest cut, whose optimum
might bear no correlation with the sparsest cut optimum. The following theorem
shows that this is not the case.

Theorem 1 For every graphs G,H, σ(G,H) = σ′(G,H).

Furthermore, there is a polynomial time algorithm that, given a mapping f : V → Rm,
finds a cut S such that

σG,H(S) ≤ |EH |
|EG|

·
∑
{u,v}Gu,v||f(u)− f(v)||1∑
u,vHu,v||f(u)− f(v)||1

(4)

Proof: We use ideas that have already come up in the proof the difficult direction
of Cheeger’s inequality. First, we note that for every nonnegative reals a1, . . . , am and
positive reals b1, . . . , bm we have

a1 + · · · am
b1 + · · · bm

≥ min
i

ai
bi

(5)

as can be seen by noting that
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∑
j

aj =
∑
j

bj ·
aj
bj
≥
(

min
i

ai
bi

)
·
∑
j

bj

Let fi(v) be the i-th coordinate of the vector f(v), thus f(v) = (f1(v), . . . , fm(v)).
Then we can decompose the right-hand side of (4) by coordinates, and write∑

{u,v}Gu,v||f(u)− f(v)||1∑
{u,v}Hu,v||f(u)− f(v)||1

=

∑
i

∑
{u,v}Gu,v|fi(u)− fi(v)|∑

i

∑
{u,v}Hu,v|fi(u)− fi(v)|

≥ min
i

∑
{u,v}Gu,v|fi(u)− fi(v)|∑
{u,v}Hu,v|fi(u)− fi(v)|

This already shows that, in the definition of φ′, we can map, with no loss of generality,
to 1-dimensional `1 spaces.

Let i∗ be the coordinate that achieves the minimum above. Because the cost function
is invariant under the shifts and scalings (that is, the cost of a function x → f(x) is
the same as the cost of x → af(x) + b for every two constants a 6= 0 and b) there is
a function g : V → R such that g has the same cost function as fi∗ and its range is
such that

max
v
g(v)−min

v
g(v) = 1

Let us now pick a threshold t uniformly at random from the interval [minv g(v),maxv g(v)],
and define the random variables

St := {v : g(v) ≤ t}

We observe that for every pairs of vertices u, v we have

E |1St(u)− 1St(v)| = |g(u)− g(v)|

and so we get ∑
{u,v}Gu,v||f(u)− f(v)||1∑
{u,v}Hu,v||f(u)− f(v)||1

≥
∑
{u,v}Gu,v|g(u)− g(v)|∑
{u,v}Hu,v|g(u)− g(v)|
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=
E
∑
{u,v}Gu,v|1St(u)− 1St(v)|

E
∑
{u,v}Hu,v|1St(u)− 1St(v)|

Finally, by an application of (5), we see that there must be a set S among the possible
values of St such that (4) holds.

Notice that the proof was completely constructive: we simply took the coordinate fi∗
of f with the lowest cost function, and then the “threshold cut” given by fi∗ with the
smallest sparsity. �

5 A Theorem of Bourgain

We will derive our main result (2) from the L1 “rounding” process of the previous
section, and from the following theorem of Bourgain (the efficiency considerations are
due to Linial, London and Rabinovich).

Theorem 2 (Bourgain) Let d : V × V → R be a semimetric defined over a finite
set V . Then there exists a mapping f : V → Rm such that, for every two elements
u, v ∈ R,

||f(u)− f(v)||1 ≤ d(u, v) ≤ ||f(u)− f(v)||1 · c · log |V |
where c is an absolute constant. Given d, the mapping f can be found with high
probability in randomized polynomial time in |V |.

To see that the above theorem of Bourgain implies (2), consider graphs G,H, and let
d be the optimal solution of the Leighton-Rao relaxation of the sparsest cut problem
on G,H, and let f : V → R be a mapping as in Bourgain’s theorem applied to d.
Then

LR(G,H) =
|EH |
|EG|

·
∑
{u,v}Gu,vd(u, v)∑
{u,v}Hu,vd(u, v)

≥ |EH |
|EG|

·
∑
{u,v}Gu,v||f(u)− f(v)||1

c · log |V | ·
∑
{u,v}Hu,v||f(u)− f(v)||1

≥ 1

c · log |V |
· σ(G,H)

The theorem has a rather short proof, but there is an element of “magic” to it. We
will discuss several examples and we will see what approaches are suggested by the
examples. At the end of the discussion, we will see the final proof as, hopefully, the
“natural” outcome of the study of such examples and failed attempts.
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6 Preliminary and Motivating Examples

A first observation is that embeddings of finite sets of points into L1 can be equiva-
lently characterized as probabilistic embeddings into the real line.

Fact 3 For every finite set V , dimension m, and mapping F : V → Rm, there is a
finitely-supported probability distribution D over functions f : V → R such that for
every two points u, v ∈ V :

E
f∼D
|f(u)− f(v)| = ||F (u)− F (v)||1

Conversely, for every finite set V and finitely supported distribution D over functions
f : V → R, there is a dimension m and a mapping F : V → Rm such that

E
f∼D
|f(u)− f(v)| = ||F (u)− F (v)||1

Proof: For the first claim, we write Fi(v) for the i-th coordinate of F (v), that is
F (v) = (F1(v), . . . , Fm(v)), and we define D to be the uniform distribution over the
m functions of the form x→ m · Fi(x).

For the second claim, if the support of D is the set of functions {f1, . . . , fm}, where
function fi has probability pi, then we define F (v) := (p1f1(v), . . . , pmfm(v)). �

It will be easier to reason about probabilistic mappings into the line, so we will switch
to the latter setting from now on.

Our task is to associate a number to every point v, and the information that we have
about v is the list of distances {d(u, v)}. Probably the first idea that comes to mind
is to pick a random reference vertex r ∈ V , and work with the mapping v → d(r, v),
possibly scaled by a multiplicative constant. (Equivalently, we can think about the
deterministic mapping V → R|V |, in which the vertex v is mapped to the sequence
(d(u1, v), . . . , d(un, v), for some enumeration u1, . . . , un of the elements of V .)

This works in certain simple cases.

Example 4 (Cycle) Suppose that d(·, ·) is the shortest-path metric on a cycle, we
can see that, for every two points on the cycle, Er∈V |d(r, u) − d(r, v)| is within a
constant factor of their distance d(u, v). (Try proving it rigorously!)

Example 5 (Simplex) Suppose that d(u, v) = 1 for every u 6= v, and d(u, u) = 0.
Then, for every u 6= v, we have Er∈V |d(r, u)− d(r, v)| = P[r = u ∨ r = v] = 2/n, so,
up to scaling, the mapping incurs no error at all.
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But there are also simple examples in which this works very badly.

Example 6 (1-2 Metric) Suppose that for every u 6= v we have d(u, v) ∈ {1, 2}
(any distance function satisfying this property is always a metric) and that, in par-
ticular, there is a special vertex z at distance 2 from all other vertices, while all other
vertices are at distance 1 from each other. Then, for vertices u, v both different from
z we have, as before

E[|d(r, u)− d(r, v)|] =
2

n

but for every v different from z we have

E[|d(r, z)− d(r, v)|] =
n− 2

n
· |2− 1|+ 1

n
· |2− 0|+ 1

n
· |0− 2| = 1 +

2

n

and so our error is going to be Ω(n) instead of the O(log n) that we are trying to
establish.

Maybe the next simplest idea is that we should pick at random several reference
points r1, . . . , rk. But how do we combine the information d(r1, u), . . . , d(rk, u) into
a single number to associate to u? If we just take the sum of the distances, we are
back to the case of sampling a single reference point. (We are just scaling up the
expectation by a factor of k.)

The next simplest way to combine the information is to take either the maximum or
the minimum. If we take the minimum, we see that we have the very nice property
that we immediately guarantee that our distances in the L1 embedding are no bigger
than the original distances, so that it “only” remains to prove that the distances don’t
get compressed too much.

Fact 7 Let d : V × V → R be a semimetric and A ⊆ V be a non-empty subset of
points. Define fA : V → R as

fA(v) := min
r∈A

d(r, v)

Then, for every two points u, v we have

|fA(u)− fA(v)| ≤ d(u, v)

Proof: Let a be the point such that d(a, u) = fA(u) and b be the point such that
d(b, v) = fA(v). (It’s possible that a = b.) Then
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fA(u) = d(a, u) ≥ d(v, a)− d(u, v) ≥ d(v, b)− d(u, v) = fA(v)− d(u, v)

and, similarly,

fA(v) = d(b, v) ≥ d(u, b)− d(u, v) ≥ d(u, a)− d(u, v) = fA(u)− d(u, v)

�

Is there a way to sample a set A = {r1, . . . , rk} such that, for every two points u, v,
the expectation E |fA(u) − fA(v)| is not too much smaller than d(u, v)? How large
should the set A be?

Example 8 (1-2 Metric Again) Suppose that for every u 6= v we have d(u, v) ∈
{1, 2}, and that we pick a subset A ⊆ V uniformly at random, that is, each event
r ∈ A has probability 1/2 and the events are mutually independent.

Then for every u 6= v:

1

4
· d(u, v) ≤ |E |fA(u)− fA(v)| ≤ d(u, v)

because with probability 1/2 the set A contains exactly one of the elements u, v, and
conditioned on that event we have |fA(u)− fA(v)| ≥ 1 (because one of fA(u), fA(v) is
zero and the other is at least one), which is at least d(u, v)/2.

If we pick A uniformly at random, however, we incur an Ω(n) distortion in the case of
the shortest path metric on the cycle. In all the examples seen so far, we can achieve
constant distortion if we “mix” the distribution in which A is a random set of size
1 and the one in which A is a chosen uniformly at random among all sets, say by
sampling from the former probability with probability 1/2 and from the latter with
probability 1/2.

Example 9 (Far-Away Clusters) Suppose now that d(·, ·) has the following struc-
ture: V is partitioned into clusters B1, . . . , Bk, where |Bi| = i (so k ≈

√
2n), and

we have d(u, v) = 1 for vertices in the same cluster, and d(u, v) = n for vertices in
different clusters.

If u, v are in the same cluster, then d(u, v) = 1 and

E |fA(u)− fA(v)| = P[A contains exactly one of u, v]

If u, v are in different clusters Bi, Bj, then d(u, v) = n and

E |fA(u)− fA(v)| ≈ nP[A intersects exactly one of Bi, Bj]
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If we want to stick to this approach of picking a set A of reference elements according
to a certain distribution, and then defining the map fA(v) := minr∈A d(r, v), then
the set A must have the property that for every two sets S, T , there is at least a
probability p that A intersects exactly one of S, T , and we would like p to be as large
as possible, because the distortion caused by the mapping will be at least 1/p.

This suggest the following distribution D:

1. Sample a power of two t uniformly at random in {1, 2, 4, . . . , 2blog2 nc}

2. Sample A ⊆ V by selecting each v ∈ V , independently, to be in A with proba-
bility 1/t and to be in V − A with probability 1− 1/t.

This distribution guarantees the above property with p = 1/O(log n).

Indeed, the above distribution guarantees a distortion at most O(log n) in all the
examples encountered so far, including the tricky example of the clusters of different
size. In each example, in fact, we can prove the following claim: for every two
vertices u, v, there is a scale t, such that conditioned on that scale being chosen, the
expectation of |fA(u), fA(v)| is at least a constant times d(u, v). We could try to
prove Bourgain’s theorem by showing that this is true in every semimetric.

Let us call Dt the conditional distribution of D conditioned on the choice of a scale
t. We would like to prove that for every semimetric d(·, ·) and every two points u, v
there is a scale t such that

E
A∼Dt

|fA(u)− fA(v)| ≥ Ω(d(u, v))

which, recalling that |fA(u)−fA(v)| ≤ d(u, v) for every set A, is equivalent to arguing
that

P
A∼Dt

[|fA(u)− fA(v)| ≥ Ω(d(u, v))] ≥ Ω(1)

For this to be true, there must be distances d1, d2 such that d1 − d2 ≥ Ω(d(u, v))
and such that, with constant probability according to Dt, we have fA(u) ≥ d1 and
fA(v) ≤ d2 (or vice-versa). For this to happen, there must be a constant probability
that A avoids the set {r : d(u, r) < d1} and intersects the set {r : d(v, r) ≤ d2}. For
this to happen, both sets must have size ≈ t.

This means that if we want to make this “at least one good scale for every pair of
points” argument work, we need to show that for every two vertices u, v there is a
“large” distance d1 and a “small” distance d2 (whose difference is a constant times
d(u, v)) such that a large-radius ball around one of the vertices and a small-radius
ball around the other vertex contain roughly the same number of elements of V .

Consider, however, the following example.
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Example 10 (Joined Trees) Consider the graph obtained by taking two complete
binary trees of the same size and identifying their leaves, as in the picture below.

Consider the shortest-path metric d(·, ·) in the above graph. Consider the “root”
vertices u and v. Their distance d(u, v) is ≈ log n, but, at every scale t, both fA(u)
and fA(v) are highly concentrated around t and, it can be calculated that, at every
scale t, we have

E
A∼Dt

[|fA(u)− fA(v)|] = Θ(1)

This is still good, because averaging over all scales we still get

E
A∼D

[|fA(u)− fA(v)|] ≥ Ω(1) =
1

O(log n)
· d(u, v)

but this example shows that the analysis cannot be restricted to one good scale but has,
in some cases, to take into account the contribution to the expectation coming from
all the scales.

In the above example, the only way to get a ball around u and a ball around v with
approximately the same number of points is to get balls of roughly the same radius.
No scale could then give a large contribution to the expectation EA∼D[|fA(u)−fA(v)|];
every scale, however, gave a noticeable contribution, and adding them up we had a
bounded distortion. The above example will be the template for the full proof, which
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will do an “amortized analysis” of the contribution to the expectation coming from
each scale t, by looking at the radii that define a ball around u and a ball around v
with approximately t elements.

7 The Proof of Bourgain’s Theorem

Given Fact 3 and Fact 7, proving Bourgain’s theorem reduces to proving the following
theorem.

Theorem 11 For a finite set of points V , consider the distribution D over subsets
of V sampled by uniformly picking a scale t ∈ {1, . . . , 2blog2 |V |c} and then picking
independently each v ∈ V to be in A with probability 1/t. Let d : V × V → R be a
semimetric. Then for every u, v ∈ V ,

E
A∼D

[|fA(u)− fA(v)|] ≥ 1

c log2 |V |
· d(u, v)

where c is an absolute constant.

Proof: Fix two vertices u and v

For each t, let rut be the distance from u to the t-th closest point to u (counting u),
or d(u, v)/3, whichever is smaller, and define rvt similarly. By definition, we have

|{w : d(u,w) < rut}| < t

Call t∗ the minimum of |{w : d(u,w) < d(u, v)/3}| and |{w : d(v, w) < d(u, v)/3}|.
Then, for t ≤ t∗ we have that both rut and rvt are < d(u, v)/3, but for t ≥ t∗ + 1 we
have that at least one of rut or rvt (possibly, both) equals d(u, v)/3. Note also that
for t ≤ t∗ we have

|{w : d(u,w) ≤ rut}| ≥ t

and similarly for v.

We claim that there is an absolute constant c such that for every scale t ≤ t∗, we have

E
A∼Dt

|fA(u)− fA(v)| ≥ c · (ru2t + rv2t − rut − rvt) (6)

We prove the claim by showing that there are two disjoint events, each happening
with probability ≥ c, such that in one event |fA(u)− fA(v)| ≥ ru2t − rvt, and in the
other event |fA(u)− fA(v)| ≥ rvt2t − rut.
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1. The first event is that A avoids the set {z : d(u, z) < ru2t} and intersects the
set {z : d(v, z) ≤ rvt}. The former set has size < 2t, and the latter set has size
≤ t; the sets are disjoint because we are looking at balls or radius ≤ d(u, v)/3
around u and v; so the event happens with a probability that is at least an
absolute constant. When the event happens,

|fA(u)− fA(v)| ≥ fA(u)− fA(v) ≥ ru2t − rvt

2. The second event is that A avoids the set {z : d(v, z) < rv2t} and intersects the
set {z : d(u, z) ≤ rut}. The former set has size < 2t, and the latter set has size
≤ t; the sets are disjoint because we are looking at balls or radius ≤ d(u, v)/3
around u and v; so the event happens with a probability that is at least an
absolute constant. When the event happens,

|fA(u)− fA(v)| ≥ fA(v)− fA(u) ≥ rv2t − rut

So we have established (6). Summing over all scales up to the largest power of two
t′ ≤ t∗, we have

E
A∼D
|fA(u)− fA(v)|

≥ c

1 + log2 n
· (ru2t′ + rv2t′ − ru1 − rv1)

≥ c

1 + log2 n
· d(u, v)

3

�

There is one remaining point to address. In Fact 3, we proved that a distribution over
embeddings on the line can be turned into an L1 embeddings, in which the number
of dimensions is equal to the size of the support of the distribution. In our proof, we
have used a distribution that ranges over 2|V | possible functions, so this would give
rise to an embedding that uses a superpolynomial number of dimensions.

To fix this remaining problem, we sample m = O(log3 |V |) sets A1, . . . , Am and we
define the embedding f(u) := (m−1 · fA1(u), . . . ,m−1 · fAm(u)). It remains to prove
that this randomized mapping has low distortion with high probability, which is an
immediate consequence of the Chernoff bounds. Specifically, we use the following
form of the Chernoff bound:

Lemma 12 Let Z1, . . . , Zm be independent nonnegative random variables such that,
with probability 1, 0 ≤ Zi ≤M . Let Z := 1

m
(Z1 + · · ·+ Zm). Then

P[EZ − Z ≥ t] ≤ e−2mt2/M2
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Let us look at any two vertices u, v. Clearly, for every choice of A1, . . . , Am, we have
||f(u) − f(v)||1 ≤ d(u, v) so it remains to prove a lower bound to their L1 distance.
Let us call Z the random variable denoting their L1 distance, that is

Z := ||f(u)− f(v)|| =
m∑
i=1

1

m
|fAi

(u)− fAi
(v)|

We can write Z = 1
m
· (Z1 + · · ·+ Zm) where Zi := |fAi

(u)− fAi
(v)|, so that Z is the

sum of identically distributed nonnegative random variables, such that

Zi ≤ d(u, v)

EZi ≥
c

log |V |
d(u, v)

Applying the Chernoff bound with M = d(u, v) and t = c
2 log |V |d(u, v), we have

P
[
Z ≤ c

2 log |V |
d(u, v)

]
≤ P

[
Z ≤ EZ −

c

2 log |V |
d(u, v)

]
≤ 2−2mc2/(2 log |V |)2

which is, say, ≤ 1/|V |3 if we choose m = c′ log3 |V | for an absolute constant c′.

By taking a union bound over all pairs of vertices,

P
[
∀u, v. ||f(u)− f(v)||1 ≥

c

2 log |V |
· d(u, v)

]
≥ 1− 1

|V |

8 Tightness of the Analysis of the Leighton-Rao

Relaxation

If (X, d) and (X ′, d′) are metric spaces, we say that a mapping f : X → X ′ is an
embedding of (X, d) into (X ′, d) with distortion at most c if there are parameters
c1, c2, with c = c1c2 such that, for every u, v ∈ X, we have

1

c1
· d′(u, v) ≤ d(u, v) ≤ c2 · d′(u, v)

14



The metric space Rm with distance ||u− v|| =
√∑

i(ui − vi)2 is denoted by `2m, and
the metric space Rm with distance ||u− v||1 =

∑
i |ui− vi| is denoted by `1m. We just

proved the following result.

Theorem 13 (Bourgain) There is an absolute constant c such that every finite
metric space (V, d) embeds into `1m with distortion at most c log |V |, where m =
O(log3 |V |).

If we solve the Leighton-Rao linear programming relaxation to approximate the spars-
est cut of a graph G = (V,E), and we let d(·, ·) be an optimal solution, we note that,
if we weigh each edge (u, v) ∈ E by d(u, v), and then compute shortest paths in this
weighted graph, then, for every two vertices x, y, the distance d(x, y) is precisely the
length of the shortest path from x to y. In particular, if we are using the Leighton-
Rao relaxation in order to approximate the sparsest cut in a given planar graph, for
example, then the solution d(·, ·) that we need to round is not an arbitrary metric
space, but it is the shortest path metric of a weighted planar graph. It is conjec-
tured that, in this case, the Leighton-Rao relaxation could deliver a constant-factor
approximation.

Question 1 Is there an absolute constant c such that every metric space (X, d) con-
structed as the shortest-path metric over the vertices of a planar graph can be embedded
into `1m with distortion at most c, where m = |V |O(1)?

So far, it is known that k-outerplanar graphs, for constant k, embed in `1 with constant
distortion.

This is just an example of a large family of questions that can be asked about the
embeddability of various types of metric spaces into each other.

For general finite metric spaces, the logarithmic distortion of Bougain’s theorem is
best possible.

In order to prove the optimality of Bourgain’s theorem, we will state without proof
the existence of constant degree families of expanders. In a later part of the course
we will prove their existence and give efficient constructions.

Theorem 14 (Existence of Expanders) There are absolute constants d and c such
that, for infinitely many n, there is an n-vertex d-regular graph Gn such that φ(Gn) ≥
c.

On such graphs, the Leighton-Rao relaxation is LR(Gn) ≤ O(1/ log n), showing that
our proof that LR(G) ≥ φ(G)O(logn) is tight.

For every two vertices u, v, define d(u, v) as the length of (that is, the number of edges
in) a shortest path from u to v in Gn.
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Then

∑
u,v

Au,vd(u, v) = 2|E|

Because each graph Gn is d-regular, it follows that for every vertex v there are ≤
1 + d+ · · ·+ dk < dk+1 vertices at distance ≤ k from v. In particular, at least half of
the vertices have distance ≥ t from v, where t = blogd n/2c − 1, which implies that

∑
u,v

d(u, v) ≥ n · n
2
· t = Ω(n2 log n)

Recall that

LR(G) = min
d semimetric

|V |2

2|E|

∑
u,v Au,vd(u, v)∑

u,v d(u, v)

and so

LR(Gn) ≤ O

(
1

log n

)
even though

φ(Gn) ≥ Ω(1)

Note that we have also shown that every embedding of the shortest-path metric
d(·, ·) on Gn into `1 requires distortion Ω(log n), and so we have proved the tightness
of Bourgain’s theorem.

Exercises

1. Let G = (V,EG), H = (V,EH) be an instance of the non-uniform sparsest cut
problem. Let d(u, v) a feasible solution to the Leighton-Rao relaxation

LR(G,H) := min
d : V × V → R
d semi-metric

|EH |
|EG|

·
∑
{u,v}Gu,vd(u, v)∑
{u,v}Hu,vd(u, v)

Let d′(u, v) be the length of the shortest path from u to v in the graph that
has the edges of G, and each edge (u, v) ∈ EG is weighted by d(u, v). Show
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that d′(u, v) is a feasible solution whose cost is smaller than or equal to the cost
d(u, v).

2. Using the above fact, show that if G is a cycle and H is a clique, then the
solution in which d(u, v) is the length of the shortest path from u to v in G is
an optimal solution.

[Hint: start from an optimal solution, derive from it another solution of the
same cost in which d(u, v) is the same for every u, v that are adjacent in G,
then apply the fact proved in the previous exercise.]
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