Notes for Lecture 4

In the last lecture we defined the Fourier coefficients of Boolean functions and studied some of their properties. Recall that

- Any Boolean function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ may be expressed uniquely as

$$
f(x)=\sum_{S \subseteq\{1, \ldots, n\}} \widehat{f}(S) u_{S}(x)
$$

where $u_{S}(x)=(-1)^{\sum_{i \in S} x_{i}}$ and $\widehat{f}(S)=\left(f, u_{S}\right)=\mathbb{E}_{x \sim\{0,1\}^{n}} f(x) u_{S}(x)$.

- $\widehat{f}(\emptyset)=\mathbb{E}_{x \sim\{0,1\}^{n}} f(x)$
- $\sum_{S}|\widehat{f}(S)| \leq \sqrt{2^{n}}$
- $\sum_{S} \widehat{f}^{2}(S)=1$
- If z_{1}, \ldots, z_{n} are ε-biased and $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ then

$$
\left|\underset{x \sim\{0,1\}^{n}}{\mathbb{E}} f(x)-\mathbb{E} f\left(z_{1}, \ldots, z_{n}\right)\right| \leq 2 \varepsilon \sum_{S \neq \emptyset}|\widehat{f}(S)|
$$

- If z_{1}, \ldots, z_{n} are ε-biased and $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ then

$$
\left|\operatorname{Pr}_{x \sim\{0,1\}^{n}}[f(x)=1]-\operatorname{Pr}\left[f\left(z_{1}, \ldots, z_{n}\right)=1\right]\right| \leq \varepsilon \sum_{S \neq \emptyset}|\widehat{f}(S)|
$$

- If a Boolean function f depends on only k of its input bits then $\sum_{S \neq \emptyset}|\widehat{f}(S)| \leq \sqrt{2^{k}}$.

Today we will see some classes of functions for which ε-biased distributions are ε-pseudorandom. Fix $\left(a_{1}, \ldots a_{k}\right) \in\{0,1\}^{k}$. Let $f:\{0,1\}^{k} \rightarrow\{-1,1\}$ be defined by

$$
f\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}-1 & \text { if } \forall i \quad x_{i}=a_{i} \\ 1 & \text { otherwise }\end{cases}
$$

Let us estimate the Fourier coefficients of f. For any $S \neq \emptyset$ we have

$$
\widehat{f}(S)=\mathbb{E} f(x) u_{S}(x)=2 \operatorname{Pr}\left[f(x)=u_{S}(x)\right]-1
$$

Since $\frac{1}{2}-\frac{1}{2^{k}} \leq \operatorname{Pr}\left[f(x)=u_{S}(x)\right] \leq \frac{1}{2}+\frac{1}{2^{k}}$ we have $|\widehat{f}(S)| \leq \frac{2}{2^{k}}$. It follows that $\sum_{S \neq \emptyset}|\widehat{f}(S)| \leq$ $\frac{2\left(2^{k}-1\right)}{2^{k}} \leq 2$. Thus for every fixed pattern $a=\left(a_{1}, \ldots, a_{k}\right)$ and every ε-biased random variable $z=\left(z_{1}, \ldots, z_{k}\right)$, the function f as defined above satisfies $|\operatorname{Pr}[f(x)=-1]-\operatorname{Pr}[f(z)=-1]| \leq 2 \varepsilon$, i.e., $\left|\frac{1}{2^{k}}-\operatorname{Pr}[z=a]\right| \leq 2 \varepsilon$.

Now recall that if $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is a function that depends on only k of its input bits, i_{1}, \ldots, i_{k} then $\widehat{f}(S)=0$ for every S which is not a subset of $\left\{i_{1}, \ldots, i_{k}\right\}$. It follows that for any k-bit pattern $a_{i_{1}}, \ldots, a_{i_{k}}$ the function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ defined by

$$
f\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}-1 & \text { if } \forall j \quad x_{i_{j}}=a_{i_{j}} \\ 1 & \text { otherwise }\end{cases}
$$

has the property that $\sum_{S \neq \emptyset}|\widehat{f}(S)| \leq 2$.
A decision tree on n inputs is a rooted binary tree in which each non-leaf node is labelled with some input variable $x_{i}, 1 \leq i \leq n$. The two subtrees of the node correspond to the further computation when the variable x_{i} at the node takes value 0 or 1 . Each leaf is labelled with a return value of the function to be computed. Computation on input $x=\left(x_{1}, \ldots, x_{n}\right)$ proceeds by starting at the root, and examining the variable x_{i} with which the root is labelled. Depending on the value of x_{i} computation proceeds recursively in the appropriate subtree. When a leaf is reached, the value of the leaf is returned. Note that each leaf corresponds to a (partial) pattern of variable settings. By size of the decision tree we will mean the number of leaves. We will show that the size of a decision tree is an upper bound on the sum of the non-principal Fourier coefficients of the function it computes.
Suppose $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is computable by a decision tree with m leaves. (Note that we are not making any assumption about the optimality of the tree.) For each leaf ℓ of the decision tree we define the auxiliary function

$$
f_{\ell}(x)= \begin{cases}0 & \text { if computation on } x \text { does not lead to } \ell \\ \text { output of } \ell & \text { otherwise }\end{cases}
$$

i. e., f_{ℓ} is non-zero only on inputs that lead the conputation to ℓ. (Note that f_{ℓ} is not a boolean function.) Since every input x leads the computation to exactly one leaf, we have

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\ell} f_{\ell}\left(x_{1}, \ldots, x_{n}\right)
$$

Taking Fourier expansions of the auxiliary functions we have

$$
f(x)=\sum_{\ell} f_{\ell}(x)=\sum_{\ell} \sum_{S} \widehat{f}_{\ell}(S) u_{S}(x)=\sum_{S}\left(\sum_{\ell} \widehat{f}_{\ell}(S)\right) u_{S}(x)
$$

By the uniqueness of Fourier expansions, $\widehat{f}(S)=\sum_{\ell} \widehat{f}_{\ell}(S)$ for each S, and we have

$$
\sum_{S \neq \emptyset}|\widehat{f}(S)|=\sum_{S \neq \emptyset}\left|\sum_{\ell} \widehat{f}_{\ell}(S)\right| \leq \sum_{S \neq \emptyset} \sum_{\ell}\left|\widehat{f}_{\ell}(S)\right|=\sum_{\ell}\left(\sum_{S \neq \emptyset}\left|\widehat{f}_{\ell}(S)\right|\right) .
$$

Thus it suffices to bound the sum of the non-principal Fourier coefficients for each \widehat{f}_{ℓ}.
For each leaf ℓ define the function $g_{\ell}:\{0,1\}^{n} \rightarrow\{-1,1\}$ as follows:

$$
g_{\ell}(x)=1-2(\text { output of } \ell) f_{\ell}(x)= \begin{cases}-1 & \text { if } x \text { leads to } \ell \\ 1 & \text { otherwise }\end{cases}
$$

Then g_{ℓ} is a Boolean function corresponding to a fixed (partial) pattern of settings of the input variables. For such g_{ℓ} we have already seen that $\sum_{S \neq \emptyset}\left|\widehat{g}_{\ell}(S)\right| \leq 2$. Now for $S \neq \emptyset$,

$$
\widehat{g_{\ell}}(S)=\left(g_{\ell}, u_{S}\right)=\left(1 \pm 2 f_{\ell}, u_{S}\right)=\left(1, u_{S}\right) \pm 2\left(f_{\ell}, u_{S}\right)=0 \pm 2\left(f_{\ell}, u_{S}\right)= \pm 2 \widehat{f_{\ell}}(S)
$$

so that $\left|\widehat{g}_{\ell}(S)\right|=2\left|\widehat{f}_{\ell}(S)\right|$ and hence $\sum_{S \neq \emptyset}\left|\widehat{f}_{\ell}(S)\right| \leq 1$. We have shown
Theorem 1 If a function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is computable by a decision tree with m leaves then $\sum_{S \neq \emptyset}|\widehat{f}(S)| \leq m$.

In fact the same conclusion holds if instead of decision trees we have generalized decision trees in which the non-leaf nodes are labelled with parities of (subsets of) input variables.
To see this, note that since parity is addition $\bmod 2$, a path from the root to a leaf corresponds to a system $A x=b$ of linear equations over \mathbb{F}_{2}. Let r be the rank of A. For a leaf ℓ define

$$
g_{\ell}(x)= \begin{cases}-1 & \text { if } A x=b \\ 1 & \text { otherwise }\end{cases}
$$

Since $f(x)=\sum_{\ell} \frac{g(x)-1}{2}$ (output of ℓ), once again it is sufficient to show that $\sum_{S \neq \emptyset}\left|\widehat{g}_{\ell}(S)\right| \leq 2$.
If the system $A x=b$ is inconsistent, then $g_{\ell} \equiv 1$ and for all non-empty $S, \widehat{g_{\ell}}(S)=0$. If it is consistent, then without loss of generality (by deleting redundant rows) we may assume that the rows of A are linearly independent $\bmod 2$ (i.e., A is an $r \times n$ matrix). Let M be any full-rank $n \times n$ matrix over $\{0,1\}$ which agrees with A on the first r rows. (Such a matrix M exists because a linearly independent set of vectors may always be extended to a basis.) Let $h:\{0,1\}^{n} \rightarrow\{-1,1\}$ be defined by

$$
h(y)= \begin{cases}-1 & \text { if for } 1 \leq i \leq r, \quad y_{i}=b_{i} \\ 1 & \text { otherwise }\end{cases}
$$

Then we know that $\sum_{S \neq \emptyset}|\widehat{h}(S)| \leq 2$. Also $g_{\ell}(x)=h(M x)$ and we have

$$
\begin{aligned}
\widehat{g_{\ell}}(S) & =\left(g_{\ell}, u_{S}\right) \\
& =\mathbb{E} g_{\ell}(x)(-1)^{S^{t} x} \\
& =\mathbb{E} h(M x)(-1)^{S^{t}\left(M^{-1} M x\right)} \\
& =\mathbb{E} h(M x)(-1)^{\left(S^{t} M^{-1}\right)(M x)} \\
& =\left(h, \mathcal{U}_{\left(M^{-1}\right)^{t} S}\right) \\
& =\widehat{h}\left(\left(M^{-1}\right)^{t} S\right)
\end{aligned}
$$

where the superscript t denotes transpose and by abuse of notation we use S to denote the $\{0,1\}$ vector of inclusion in set S. Under this identification, $\left(M^{-1}\right)^{t} S$ is some other subset of $\{1, \ldots, n\}$ and we've shown that the non-principal Fourier coefficients of g_{ℓ} are just some permutation of the non-principal Fourier coefficients of h. It follows that $\sum_{S \neq \emptyset}\left|\widehat{g_{\ell}}(S)\right| \leq 2$.

Thus we have shown that an (ε / m)-biased distribution is ε-pseudorandom for the class of all Boolean functions f that are computable by decision trees (with nodes labelled by parities) with m leaves. Next we will consider consider functions representable by k-CNF formulas of small size. We'll say $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is a k-CNF with m clauses if there is a k-CNF formula φ with m clauses such that

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}-1 & \text { if } \varphi \text { is satisfied by } x_{1}, \ldots, x_{n} \\ 1 & \text { otherwise }\end{cases}
$$

It turns out that there are 2-CNF functions f with $m=O(n)$ clauses for which $\sum_{S \neq \emptyset}|\widehat{f}(S)|=$ $2^{\Omega(n)}$. Therefore we cannot apply the previous arguments to show pseudorandomness of ε-biased distributions for this class. However it can be shown that if f is a k-CNF with m clauses and z_{1}, \ldots, z_{n} is $\varepsilon^{O\left(k 2^{k}\right)}$-biased then $\left(z_{1}, \ldots, z_{n}\right)$ is ϵ-pseudorandom for f.

Conjecture 1 If z_{1}, \ldots, z_{n} is poly (ε / m)-biased then it is ε-pseudorandom for the class of k-CNFs with m clauses.

Conjecture 2 If z_{1}, \ldots, z_{n} is $\left(\frac{1}{2^{\log (s / \varepsilon)^{O(d)}}}\right)$-biased then it is ε-pseudorandom for the class of functions that are computable by circuits of size s and depth d.

