Notes for Lecture 14

In this lecture we will show how to concatenate the Hadamard and Reed-Solomon codes to obtain a code where the number of corrupted bits can get arbitrarily close to $\frac{1}{2}$. We also present Reed-Muller codes together with a sublinear-time unique decoding algorithm.

1 Concatenation of Reed-Solomon and Hadamard codes

Let us consider a Reed-Solomon code on the field \mathbb{F} :

$$
\mathbf{R S}: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n}, \quad n \leq|\mathbb{F}|
$$

By Sudan's algorithm (see previous lecture), given a corrupted encoding with $\geq 2 \sqrt{k n}+1$ nonerrors, we can reconstruct in polynomial time the list of all codewords that agree with the given input in at least $\geq 2 \sqrt{k n}+1$ positions.
Now consider a Hadamard code

$$
\mathbf{H}:\{0,1\}^{k} \rightarrow\{0,1\}^{2^{k}}
$$

By the Goldreich-Levin algorithm, given a corrupted encoding with $\geq\left(\frac{1}{2}+\epsilon\right) 2^{k}$ non-errors, in time $\operatorname{poly}\left(k, \frac{1}{\epsilon}\right)$ we can reconstruct all messages whose encoding has agreement $\geq\left(\frac{1}{2}+\epsilon\right) 2^{k}$ with the input. From the analysis of the algorithm it also follows that given $y \in\{0,1\}^{2^{k}}$, there are at most $O\left(\frac{1}{\epsilon^{2}}\right)$ codewords that agree in $\geq\left(\frac{1}{2}+\epsilon\right) 2^{k}$ bits with y. By using Fourier analysis we can get $\frac{1}{4 \epsilon^{2}}$ codewords.
We want to produce a code such that if the proportion of errors in the output is less but arbitrarily close to $\frac{1}{2}$, then we can find in polynomial time all the codewords that are close to the output.
Now suppose $n=|\mathbb{F}|=2^{l}$. As before we have

$$
\mathbf{R S}: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n} \mathbf{H}:\{0,1\}^{k} \rightarrow\{0,1\}^{2^{k}},
$$

which gives

$$
\mathbf{R S} \circ \mathbf{H}:\{0,1\}^{l k} \rightarrow\{0,1\}^{n 2^{l}}
$$

If $\geq\left(\frac{1}{2}+\epsilon\right) n 2^{l}$ of the bits in the output are correct, then an easy calculation shows there exist $n \epsilon / 2$ blocks in which at least $\geq\left(\frac{1}{2}+\frac{1}{\epsilon}\right) n$ bits are correct. We now apply the Hadamard list decoding algorithm with radius $\left(\frac{1}{2}-\frac{\epsilon}{2}\right) n$ to each block individually. By a previous argument, there are at most ϵ^{2} codewords in each list.

Now pick a random element from each list and construct a new binary string. For at least $\frac{\epsilon}{2} n$ of the blocks, the correct field codeword is contained in its list and there are at most $1 / \epsilon^{2}$ elements in each list, therefore this random assignment will, on average, correctly decode at least $\frac{\epsilon^{3}}{2}$ of the blocks.

Think of the blocks as elements of \mathbb{F}. We have an $\mathbf{R S}$ encoding where the proportion of non-errors is at least $\frac{\epsilon^{3}}{2}$. If $n \frac{\epsilon^{3}}{2}>2 \sqrt{n k}$, then by Sudan's algorithm we are done. But

$$
n \frac{\epsilon^{3}}{2}>2 \sqrt{n k} \Leftrightarrow n \geq \frac{16 k}{\epsilon^{6}} .
$$

Since $l=\log n$, we get $l=\log \left(\frac{16 k}{\epsilon^{6}}\right)$ and our encoding becomes

$$
\mathbf{R S} \circ \mathbf{H}:\{0,1\}^{k \log \left(\frac{16 k}{\epsilon^{\sigma}}\right)} \rightarrow\{0,1\}^{\frac{256 k^{2}}{\epsilon^{12}}}
$$

The following theorem is therefore true:

Theorem 1 For any k, ϵ, there is a code $C:\{0,1\}^{k} \leftarrow\{0,1\}^{n}$, where $n=\operatorname{poly}\left(k, \frac{1}{\epsilon}\right)$, computable in polynomial time, such that given $y \in\{0,1\}^{n}$, we can find in time polynomial in ($k, \frac{1}{\epsilon}$) a list of size poly $\left(\frac{1}{\epsilon}\right)$ that contains all codewords with agreement $\geq\left(\frac{1}{2}+\epsilon\right) n$ with y.

2 Reed-Müller codes

Reed-Müller codes are an encoding of the type

$$
\mathbf{R M}: \mathbb{F}^{h^{m}} \rightarrow \mathbb{F}^{q^{m}}
$$

Fix a subset $H \subseteq \mathbb{F}$, such that $|H|=h$. Given a message M of length h^{m}, we think of M as the list of values of a function

$$
M: H^{m} \rightarrow \mathbb{F}
$$

Claim 2 We can always find a polynomial $P_{M}: \mathbb{F}^{m} \rightarrow \mathbb{F}$ which has degree $\leq h$ in each variable such that

$$
P_{M}(x)=M(x), \forall x \in H^{m} .
$$

Proof: This can be done by using the standard Lagrange inversion formula and induction on m. \square The encoding of M is then the list of values of $P_{M}(\cdot)$ at all points in \mathbb{F}^{m}.

Now suppose we have two different messages M and M^{\prime}. Then their encodings correspond to two different polynomials and the distance between the two codewords would be

$$
\text { length of encoding } \cdot \operatorname{Pr}_{x \in \mathbb{F}^{m}}\left[P_{M}(x) \neq P_{M^{\prime}}(x)\right] \geq|\mathbb{F}|^{m}\left(1-\frac{h m}{|\mathbb{F}|}\right)
$$

This is an easy consequence of the following theorem:
Theorem 3 (Schwartz-Ziepel) If $p: \mathbb{F}^{m} \rightarrow \mathbb{F}$ is a non-zero degree d polynomial, then $\mathbf{P r}_{x \in \mathbb{F}^{m}}[p(x)=$ $0] \leq \frac{d}{|F|}$.

We therefore need $|\mathbb{F}| \geq 2 h m$ to get an encoding with relative distance $\frac{1}{2}$, in which case we will transform strings of length $k=h^{m}$ into strings of length $h^{m}(2 m)^{m}=k(2 m)^{m}$.
When m is large, take $h=k^{1 / m}$. In this case, the encoding becomes more wasteful, but the efficiency actually increases, as the decoding running-time depends only on h.
Now let us describe the decoding procedure. Let $P_{M}: \mathbb{F}^{m} \rightarrow \mathbb{F}$ be the degree $d=h m$ encoding of the message $M: H^{m} \rightarrow \mathbb{F}$, with $|\mathbb{F}| \geq 5 d=5 h m$. Suppose that the output $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ differs from P_{M} in at most $1 / 10$ of the total number $\left|\mathbb{F}^{m}\right|$ of entries. Given $x \in H^{m}$, we need to compute $p(x)$. We use the following algorithm:

RM - decode (x)
Choose uniformly at random $y \in \mathbb{F}^{m}$
Take the line $l(t)=t y+(1-t) x$
Let $F(t)$ be the result of the unique decoding of Reed-Solomon codes algorithm applied to $f(l(t))$ as a function of t
Return $f(0)$.
It is easy to see that since P_{M} is a polynomial in $x, P_{M}(l(t))$ is a composition of two polynomials, and therefore a polynomial in t, of the same degree d. Let $P_{M}(l(t))=p(t)$. We have $P_{M}(x)=$ $P_{M}(l(0))=p(0)$. Therefore recovering p is enough for recovering $M(x)$.

Now if y is uniformly distributed, then $a \cdot y$ is uniformly distributed for any constant a, so $t y+(1-t) x$ is uniformly distributed for any fixed value of t (remember we are choosing y uniformly at random). Therefore with probability $\geq 0.9, l(t)$ is correct (i.e. $f(l(t))=p(t))$ for any fixed value of t. Also, on average 0.9 of the points on $l(t)$ are correct.
By Markov's inequality, $\operatorname{Pr}[|\{t \mid p(t)=f(l(t))\}| \geq 0.7|\mathbb{F}|] \geq 2 / 3$. Using the decoding algorithm of Reed-Solomon from 2 lectures ago, we can find the unique polynomial $p(t)$ which agrees with $f(l(t)$ in at least 0.6 of the positions. We can do this since $d \leq 0.2|\mathbb{F}|$, and thus $0.4|\mathbb{F}| \leq(|\mathbb{F}|-d) / 2 . \square$
Note: It is possible to get the probability of error arbitrarily close to 1 by a method similar to that of the Goldreich-Levin algorithm.

$$
P_{M}: \mathbb{F}^{m} \rightarrow \mathbb{F} \quad M: H^{m} \rightarrow \mathbb{F} \quad h=|H|
$$

Then P_{M} is of degree $d=h m$ and $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ differs from P_{M} for at most $0.9|\mathbb{F}|^{m}$ inputs. Now look at the line through x and y, where x and y are chosen uniformly at random. Apply Sudan's list-decoding algorithm to find all polynomials of degree at most d that agree with f on the line in at least 0.05 of the points. If the list does not contain a unique polynomial q with $q(0)=f(x)$, then return an error. Otherwise output $P_{M}(y)=q(1)$.

