
U.C. Berkeley Handout N14
CS294: Pseudorandomness and Combinatorial Constructions October 13, 2005
Professor Luca Trevisan Scribe: Radu Mihaescu

Notes for Lecture 14

In this lecture we will show how to concatenate the Hadamard and Reed-Solomon codes to obtain a
code where the number of corrupted bits can get arbitrarily close to 1

2
. We also present Reed-Muller

codes together with a sublinear-time unique decoding algorithm.

1 Concatenation of Reed-Solomon and Hadamard codes

Let us consider a Reed-Solomon code on the field F:

RS : F
k → F

n, n ≤ |F|

By Sudan’s algorithm (see previous lecture), given a corrupted encoding with ≥ 2
√

kn + 1 non-
errors, we can reconstruct in polynomial time the list of all codewords that agree with the given
input in at least ≥ 2

√
kn + 1 positions.

Now consider a Hadamard code

H : {0, 1}k → {0, 1}2k

.

By the Goldreich-Levin algorithm, given a corrupted encoding with ≥ (1
2
+ ǫ)2k non-errors, in time

poly(k, 1
ǫ) we can reconstruct all messages whose encoding has agreement ≥ (1

2
+ ǫ)2k with the

input. From the analysis of the algorithm it also follows that given y ∈ {0, 1}2k

, there are at most
O(1

ǫ2
) codewords that agree in ≥ (1

2
+ ǫ)2k bits with y. By using Fourier analysis we can get 1

4ǫ2

codewords.

We want to produce a code such that if the proportion of errors in the output is less but arbitrarily
close to 1

2
, then we can find in polynomial time all the codewords that are close to the output.

Now suppose n = |F| = 2l. As before we have

RS : F
k → F

n
H : {0, 1}k → {0, 1}2k

,

which gives

RS ◦H : {0, 1}lk → {0, 1}n2l

.

If ≥ (1
2
+ ǫ)n2l of the bits in the output are correct, then an easy calculation shows there exist nǫ/2

blocks in which at least ≥ (1
2

+ 1
ǫ)n bits are correct. We now apply the Hadamard list decoding

algorithm with radius (1
2
− ǫ

2
)n to each block individually. By a previous argument, there are at

most ǫ2 codewords in each list.

1

∈{0,1}l=F

︷ ︸︸ ︷

lk bits

RS

n field elts

H

n blocks of 2l bits each

channel introduces (
1

2
− ǫ) fraction of errors

Now pick a random element from each list and construct a new binary string. For at least ǫ
2
n of

the blocks, the correct field codeword is contained in its list and there are at most 1/ǫ2 elements

in each list, therefore this random assignment will, on average, correctly decode at least ǫ3

2
of the

blocks.

Think of the blocks as elements of F. We have an RS encoding where the proportion of non-errors
is at least ǫ3

2
. If n ǫ3

2
> 2
√

nk, then by Sudan’s algorithm we are done. But

n
ǫ3

2
> 2
√

nk ⇔ n ≥ 16k

ǫ6
.

Since l = log n, we get l = log
(

16k
ǫ6

)
and our encoding becomes

RS ◦H : {0, 1}k log
�

16k

ǫ6

�
→ {0, 1}

256k
2

ǫ12 .

2

The following theorem is therefore true:

Theorem 1 For any k, ǫ, there is a code C : {0, 1}k ← {0, 1}n, where n = poly(k, 1
ǫ), computable

in polynomial time, such that given y ∈ {0, 1}n, we can find in time polynomial in (k, 1
ǫ) a list of

size poly(1
ǫ) that contains all codewords with agreement ≥ (1

2
+ ǫ)n with y.

2 Reed-Müller codes

Reed-Müller codes are an encoding of the type

RM : F
hm → F

qm

.

Fix a subset H ⊆ F, such that |H| = h. Given a message M of length hm, we think of M as the
list of values of a function

M : Hm → F.

Claim 2 We can always find a polynomial PM : F
m → F which has degree ≤ h in each variable

such that

PM (x) = M(x),∀x ∈ Hm.

Proof: This can be done by using the standard Lagrange inversion formula and induction on m.
� The encoding of M is then the list of values of PM (·) at all points in F

m.

Now suppose we have two different messages M and M ′. Then their encodings correspond to two
different polynomials and the distance between the two codewords would be

length of encoding · Pr
x∈Fm

[PM (x) 6= PM ′(x)] ≥ |F|m
(

1− hm

|F|

)

.

This is an easy consequence of the following theorem:

Theorem 3 (Schwartz-Ziepel) If p : F
m → F is a non-zero degree d polynomial, then Prx∈Fm [p(x) =

0] ≤ d
|F| .

We therefore need |F| ≥ 2hm to get an encoding with relative distance 1
2
, in which case we will

transform strings of length k = hm into strings of length hm(2m)m = k(2m)m.

When m is large, take h = k1/m. In this case, the encoding becomes more wasteful, but the
efficiency actually increases, as the decoding running-time depends only on h.

Now let us describe the decoding procedure. Let PM : F
m → F be the degree d = hm encoding of

the message M : Hm → F, with |F| ≥ 5d = 5hm. Suppose that the output f : F
m → F differs from

PM in at most 1/10 of the total number |Fm| of entries. Given x ∈ Hm, we need to compute p(x).

We use the following algorithm:

3

RM−decode(x)
Choose uniformly at random y ∈ F

m

Take the line l(t) = ty + (1− t)x
Let F (t) be the result of the unique decoding of Reed-Solomon codes algorithm
applied to f(l(t)) as a function of t
Return f(0).

It is easy to see that since PM is a polynomial in x, PM (l(t)) is a composition of two polynomials,
and therefore a polynomial in t, of the same degree d. Let PM (l(t)) = p(t). We have PM (x) =
PM (l(0)) = p(0). Therefore recovering p is enough for recovering M(x).

F

F

H

H

errors

x

y

Now if y is uniformly distributed, then a·y is uniformly distributed for any constant a, so ty+(1−t)x
is uniformly distributed for any fixed value of t (remember we are choosing y uniformly at random).
Therefore with probability ≥ 0.9, l(t) is correct (i.e.f(l(t)) = p(t)) for any fixed value of t. Also,
on average 0.9 of the points on l(t) are correct.

By Markov’s inequality, Pr[|{t|p(t) = f(l(t))}| ≥ 0.7|F|] ≥ 2/3. Using the decoding algorithm of
Reed-Solomon from 2 lectures ago, we can find the unique polynomial p(t) which agrees with f(l(t)
in at least 0.6 of the positions. We can do this since d ≤ 0.2|F|, and thus 0.4|F| ≤ (|F| − d)/2.�

Note: It is possible to get the probability of error arbitrarily close to 1 by a method similar to
that of the Goldreich-Levin algorithm.

PM : F
m → F M : Hm → F h = |H|

Then PM is of degree d = hm and f : F
m → F differs from PM for at most 0.9|F|m inputs. Now

look at the line through x and y, where x and y are chosen uniformly at random. Apply Sudan’s
list-decoding algorithm to find all polynomials of degree at most d that agree with f on the line
in at least 0.05 of the points. If the list does not contain a unique polynomial q with q(0) = f(x),
then return an error. Otherwise output PM (y) = q(1).

4

