Notes for Lecture 15

We continue our proof of the Impagliazzo-Wigderson Theorem [1] stated in Lecture 12. As was discussed there, our proof of the theorem requires sublinear-time list-decoding of error-correcting codes. In today's lecture, we give such a scheme for Reed-Muller codes. This is based on results of [2].

1 Notations and Previous Results

Recall that \mathbb{F} is a field with q elements. We consider a subset H of \mathbb{F} of size h. A Reed-Muller code maps messages in $\mathbb{F}^{h^{m}}$ to codewords in $\mathbb{F}^{q^{m}}$ for some m. It will be convenient to think of the message as a function from H^{m} to \mathbb{F}. In a Reed-Muller code, the message is interpreted as the values taken by a multivariate polynomial on the subset H^{m} of \mathbb{F}^{m}. The codeword corresponds to the values of the polynomial at all points in \mathbb{F}^{m}. We denote M the message and p the encoding. The "corrupted" codeword is denoted f.

We first recall two results from previous lectures.

Proposition 1 Assume the function $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ is $\frac{1}{10}$-close to a multivariate polynomial p : $\mathbb{F}^{m} \rightarrow \mathbb{F}$ of degree $h m$ with $q>5 h m$. Given $x \in \mathbb{F}^{m}$, we can compute $p(x)$ w.h.p. in time poly $(|\mathbb{F}|, h m)$.

Proposition 2 Let $g: \mathbb{F} \rightarrow \mathbb{F}$ and $a>2 \sqrt{(d+1)|\mathbb{F}|}$ for some d. Then, we can find a list of all polynomials of degree d that agree with g on at least a points in time poly $(|\mathbb{F}|)$. Moreover, the list has size at most $\frac{a}{2 d}$.

2 Toy Problem

We begin with a toy problem.

- Setup:
$-p: \mathbb{F}^{m} \rightarrow \mathbb{F}$ polynomial of degree $h m$
$-f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ function agreeing with p on ε fraction of inputs
- Given:
$-x, y$ uniformly random in \mathbb{F}^{m}
- the value of $p(y)$
- oracle access to f
- Goal: compute $p(x)$.

The following algorithm is a natural candidate solution to this problem. Consider the line $l(t)=$ $t y+(1-t) x$ for $t \in \mathbb{F}$. It contains $|\mathbb{F}|$ points with $l(0)=x$ and $l(1)=y$. Consider the restrictions of p and f to this line, that is $p_{0}(t)=p(l(t))$ and $f_{0}=f(l(t))$. Apply Sudan's algorithm (Proposition 2) to f_{0} with $d=h m$ and $a=\frac{\varepsilon|\mathbb{F}|}{2}$. The list returned has size $\frac{\varepsilon|\mathbb{F}|}{4 h m}$. If there is a unique polynomial r in the list with $r(1)=p(y)$ then output $r(0)$, otherwise output FAIL.

We make two claims.

Claim 3 Assume $|\mathbb{F}|>\frac{20}{\varepsilon^{2}}$. Then, with probability at least $19 / 20$ over the choice of x, y, p_{0} and f_{0} agree on at least $\frac{\varepsilon|\mathbb{F}|}{2}$ points (and, in particular, p_{0} appears in the list output by our algorithm).

Proof: Because x, y are chosen independently uniformly at random in \mathbb{F}^{m}, the points on the line $\{l(t): t \in \mathbb{F}\}$ are pairwise independent. For $t \in \mathbb{F}$, define

$$
Z_{t}= \begin{cases}1, & \text { if } p_{0}(t)=f_{0}(t) \\ 0, & \text { o.w }\end{cases}
$$

We have $\mathbb{E}\left[Z_{t}\right] \geq \varepsilon$ because p and f have ε agreement. Let $\mu=\mathbb{E}\left[\sum_{t} Z_{t}\right]$ and \mathcal{E} be the event

$$
\mathcal{E}=\left\{f_{0} \text { and } p_{0} \text { agree on less than } \frac{\varepsilon|\mathbb{F}|}{2} \text { points }\right\}
$$

By Chebyshev's inequality,

$$
\mathbb{P}[\mathcal{E}] \leq \mathbb{P}\left[\left|\sum_{t} Z_{t}-\mu\right|>\frac{\varepsilon|\mathbb{F}|}{2}\right] \leq \frac{4 \operatorname{Var}\left[\sum_{t} Z_{t}\right]}{\varepsilon^{2}|\mathbb{F}|^{2}} \leq \frac{4 \sum_{t} \operatorname{Var}\left[Z_{t}\right]}{\varepsilon^{2}|\mathbb{F}|^{2}} \leq \frac{1}{\varepsilon^{2}|\mathbb{F}|} \leq \frac{1}{20},
$$

where we have used the pairwise independence of the Z_{t} 's to permute Var and \sum, and the fact that the variance of a $0-1$ variable is at most $\frac{1}{4}$.

Claim 4 Assume $|\mathbb{F}|>\frac{16 h m}{\varepsilon^{2}}$. Then, with probability at least $\frac{19}{20}$, p_{0} is the unique polynomial in the list with value $p(y)$ at $t=1$ (for ε small enough).

Proof: We think of x and y as being picked according to the following process. We first pick a random line, that is we choose z, w independently uniformly at random and consider the line $l^{\prime}(t)=t z+(1-t) w$. We then choose two different uniform points on l^{\prime}, that is we choose t_{1}, t_{2} uniformly without replacement in \mathbb{F} and let $x=t_{1} z+\left(1-t_{1}\right) w$ and $y=t_{2} z+\left(1-t_{2}\right) w$.

By assumption, $a=\frac{\varepsilon|\mathbb{F}|}{2}>2 \sqrt{|\mathbb{F}| h m}$ so that Sudan's algorithm can be used. By Proposition 2, there are at most $\frac{\varepsilon|\mathbb{F}|}{4 h m}$ polynomials of degree at most $h m$ agreeing with f restricted to l^{\prime} on at least $\frac{\varepsilon|\mathbb{F}|}{2}$ points. Two such polynomials agree on at most $\frac{h m}{|\mathbb{F}|}$ fraction of \mathbb{F} (number of roots of difference). Assume r is a polynomial not equal to p_{0}^{\prime}, the restriction of p to l^{\prime} (in particular $\left.p_{0}^{\prime}\left(t_{2}\right)=p(y)\right)$. Then

$$
\mathbb{P}\left[r\left(t_{2}\right)=p(y)\right] \leq \frac{h m}{|\mathbb{F}|}
$$

because y is uniformly random on the line. Therefore,

$$
\mathbb{P}\left[\exists r \neq p_{0}^{\prime} \text { in the list s.t. } r\left(t_{2}\right)=p(y)\right] \leq \frac{\varepsilon|\mathbb{F}|}{4 h m} \frac{h m}{|\mathbb{F}|} \leq \frac{\varepsilon}{4} \leq \frac{1}{20}
$$

if ε is small enough.
Notice finally that even though we applied Sudan's algorithm to f restricted to l^{\prime} rather than l, there is a one-to-one linear map between polynomials such that agreement with f on l corresponds to agreement with f on l^{\prime}. This concludes the proof.

We have proved the following.

Proposition 5 Consider the setup of the Toy Problem with

$$
|\mathbb{F}|>\max \left\{\frac{20}{\varepsilon^{2}}, \frac{16 h m}{\varepsilon^{2}}\right\}
$$

Then for ε small enough, we can compute $p(x)$ with probability at least $\frac{9}{10}$.

3 Main Result

Given x, y the algorithm above is deterministic. Let $A_{y, p(y)}(x)$ be the output of the algorithm on inputs $x, y, p(y)$. Then we know from Proposition 5 that

$$
\mathbb{P}_{x, y}\left[A_{y, p(y)}(x)=p(x)\right] \geq \frac{9}{10}
$$

Therefore, there exists a y such that

$$
\mathbb{P}_{x}\left[A_{y, p(y)}(x)=p(x)\right] \geq \frac{9}{10}
$$

Fix that y. From Proposition 2, it follows that if f has a circuit of size S then $A_{y, p(y)}$ has a circuit of size $S|\mathbb{F}|+\operatorname{poly}(|\mathbb{F}|)$. Now, apply the algorithm of Proposition 1 to $A_{y, p(y)}$. We get the following result.

Theorem 6 Let $p: \mathbb{F}^{m} \rightarrow \mathbb{F}$ be a polynomial of degree $h m$ and $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ a function agreeing with p on an ε fraction of inputs in \mathbb{F}^{m}. Assume furthermore that

$$
|\mathbb{F}|>\max \left\{\frac{20}{\varepsilon^{2}}, \frac{16 h m}{\varepsilon^{2}}\right\}
$$

If f can be computed by a circuit of size S, then p can be computed by a circuit of size S poly $(|\mathbb{F}|, h m)$ (a more careful analysis gives $S|\mathbb{F}| \operatorname{poly}(\log |\mathbb{F}|, h m)+\operatorname{poly}(|\mathbb{F}|)$).

4 Back to the Impagliazzo-Wigderson Theorem

We conclude with a discussion of the relevance of Theorem 6 to our (ongoing) proof of the Impagliazzo-Wigderson theorem which we will complete in the next lecture.

Suppose L is a decision problem solvable in time $2^{O(n)}$ that cannot be solved by circuits of size $2^{\delta n}$ on inputs of length n for some $\delta>0$. Denote $L_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ the restriction of L to inputs of size n. Fix $\gamma(=\Omega(\delta))$. Using the notation of the previous sections, take $h=2^{\gamma n}, m=\frac{1}{\gamma}$, $\varepsilon=\frac{1}{2^{\gamma n}}$. From previous results, we need to take $q=16 \cdot 2^{2 \gamma n} \cdot 2^{\gamma n}=2^{3 \gamma n+4}$. We think of H as $\{0,1\}^{\gamma n}$ and L_{n} as a function from H^{m} to $\{0,1\}$. Let $p: \mathbb{F}^{m} \rightarrow \mathbb{F}$ a degree $h m$ polynomial that agrees with L_{n} on H^{m}. We think of p as a function from $\{0,1\}^{3 n+4 / \gamma}$ to $\{0,1\}^{3 \gamma n+4}$. By a standard interpolation formula, p is computable in time $2^{O(n)}$. From Theorem 6 , if there exists a circuit of size S that computes p on a fraction $\varepsilon=\frac{1}{2^{\gamma n}}$ of inputs, then there exists a circuit of size $S 2^{\gamma n c}$ for some $c>0$ that computes p everywhere. In particular, it computes L_{n} everywhere. This gives a contradiction if γ is such that $S 2^{\gamma n c}<2^{\delta n}$. Therefore, we have constructed a function with exponential average-case complexity.

What we really need is a decision problem with exponential average-case complexity. We will construct such a problem in the next lecture.

References

[1] R. Impagliazzo and A. Wigderson. $P=B P P$ unless E has sub-exponential circuits. In Proceedings of the 29th ACM Symposium on Theory of Computing, pages 220-229, 1997.
[2] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma. Journal of Computer and System Sciences, 62(2):236-266, 2001.

