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Notes for Lecture 15

We continue our proof of the Impagliazzo-Wigderson Theorem [1] stated in Lecture 12. As was
discussed there, our proof of the theorem requires sublinear-time list-decoding of error-correcting
codes. In today’s lecture, we give such a scheme for Reed-Muller codes. This is based on results
of [2].

1 Notations and Previous Results

Recall that F is a field with q elements. We consider a subset H of F of size h. A Reed-Muller
code maps messages in Fhm

to codewords in Fqm
for some m. It will be convenient to think of the

message as a function from Hm to F. In a Reed-Muller code, the message is interpreted as the
values taken by a multivariate polynomial on the subset Hm of Fm. The codeword corresponds to
the values of the polynomial at all points in Fm. We denote M the message and p the encoding.
The “corrupted” codeword is denoted f .

We first recall two results from previous lectures.

Proposition 1 Assume the function f : Fm → F is 1
10 -close to a multivariate polynomial p :

Fm → F of degree hm with q > 5hm. Given x ∈ Fm, we can compute p(x) w.h.p. in time
poly(|F|, hm).

Proposition 2 Let g : F → F and a > 2
√

(d + 1)|F| for some d. Then, we can find a list of all
polynomials of degree d that agree with g on at least a points in time poly(|F|). Moreover, the list
has size at most a

2d .

2 Toy Problem

We begin with a toy problem.

• Setup:

– p : Fm → F polynomial of degree hm

– f : Fm → F function agreeing with p on ε fraction of inputs

• Given:

– x, y uniformly random in Fm

– the value of p(y)

– oracle access to f

• Goal: compute p(x).
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The following algorithm is a natural candidate solution to this problem. Consider the line l(t) =
ty+(1−t)x for t ∈ F. It contains |F| points with l(0) = x and l(1) = y. Consider the restrictions of p
and f to this line, that is p0(t) = p(l(t)) and f0 = f(l(t)). Apply Sudan’s algorithm (Proposition 2)
to f0 with d = hm and a = ε|F|

2 . The list returned has size ε|F|
4hm . If there is a unique polynomial r

in the list with r(1) = p(y) then output r(0), otherwise output fail.

We make two claims.

Claim 3 Assume |F| > 20
ε2 . Then, with probability at least 19/20 over the choice of x, y, p0 and f0

agree on at least ε|F|
2 points (and, in particular, p0 appears in the list output by our algorithm).

Proof: Because x, y are chosen independently uniformly at random in Fm, the points on the line
{l(t) : t ∈ F} are pairwise independent. For t ∈ F, define

Zt =
{

1, if p0(t) = f0(t),
0, o.w.

We have E[Zt] ≥ ε because p and f have ε agreement. Let µ = E[
∑

t Zt] and E be the event

E =
{

f0 and p0 agree on less than
ε|F|
2

points
}

.

By Chebyshev’s inequality,

P[E ] ≤ P

[∣∣∣∣∣∑
t

Zt − µ

∣∣∣∣∣ >
ε|F|
2

]
≤

4Var [
∑

t Zt]
ε2|F|2

≤
4

∑
t Var [Zt]
ε2|F|2

≤ 1
ε2|F|

≤ 1
20

,

where we have used the pairwise independence of the Zt’s to permute Var and
∑

, and the fact that
the variance of a 0− 1 variable is at most 1

4 . �

Claim 4 Assume |F| > 16hm
ε2 . Then, with probability at least 19

20 , p0 is the unique polynomial in the
list with value p(y) at t = 1 (for ε small enough).

Proof: We think of x and y as being picked according to the following process. We first pick
a random line, that is we choose z, w independently uniformly at random and consider the line
l′(t) = tz + (1 − t)w. We then choose two different uniform points on l′, that is we choose t1, t2
uniformly without replacement in F and let x = t1z + (1− t1)w and y = t2z + (1− t2)w.

By assumption, a = ε|F|
2 > 2

√
|F|hm so that Sudan’s algorithm can be used. By Proposition 2,

there are at most ε|F|
4hm polynomials of degree at most hm agreeing with f restricted to l′ on at least

ε|F|
2 points. Two such polynomials agree on at most hm

|F| fraction of F (number of roots of difference).
Assume r is a polynomial not equal to p′

0, the restriction of p to l′ (in particular p′
0(t2) = p(y)).

Then

P[r(t2) = p(y)] ≤ hm

|F|
,
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because y is uniformly random on the line. Therefore,

P[∃r 6= p′
0 in the list s.t. r(t2) = p(y)] ≤ ε|F|

4hm

hm

|F|
≤ ε

4
≤ 1

20
,

if ε is small enough.

Notice finally that even though we applied Sudan’s algorithm to f restricted to l′ rather than l,
there is a one-to-one linear map between polynomials such that agreement with f on l corresponds
to agreement with f on l′. This concludes the proof.

�

We have proved the following.

Proposition 5 Consider the setup of the Toy Problem with

|F| > max
{

20
ε2

,
16hm

ε2

}
.

Then for ε small enough, we can compute p(x) with probability at least 9
10 .

3 Main Result

Given x, y the algorithm above is deterministic. Let Ay,p(y)(x) be the output of the algorithm on
inputs x, y, p(y). Then we know from Proposition 5 that

Px,y[Ay,p(y)(x) = p(x)] ≥ 9
10

.

Therefore, there exists a y such that

Px[Ay,p(y)(x) = p(x)] ≥ 9
10

.

Fix that y. From Proposition 2, it follows that if f has a circuit of size S then Ay,p(y) has a circuit
of size S|F|+ poly(|F|). Now, apply the algorithm of Proposition 1 to Ay,p(y). We get the following
result.

Theorem 6 Let p : Fm → F be a polynomial of degree hm and f : Fm → F a function agreeing
with p on an ε fraction of inputs in Fm. Assume furthermore that

|F| > max
{

20
ε2

,
16hm

ε2

}
.

If f can be computed by a circuit of size S, then p can be computed by a circuit of size Spoly(|F|, hm)
(a more careful analysis gives S|F|poly(log |F|, hm) + poly(|F|)).
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4 Back to the Impagliazzo-Wigderson Theorem

We conclude with a discussion of the relevance of Theorem 6 to our (ongoing) proof of the
Impagliazzo-Wigderson theorem which we will complete in the next lecture.

Suppose L is a decision problem solvable in time 2O(n) that cannot be solved by circuits of size
2δn on inputs of length n for some δ > 0. Denote Ln : {0, 1}n → {0, 1} the restriction of L to
inputs of size n. Fix γ(= Ω(δ)). Using the notation of the previous sections, take h = 2γn, m = 1

γ ,
ε = 1

2γn . From previous results, we need to take q = 16 · 22γn · 2γn = 23γn+4. We think of H
as {0, 1}γn and Ln as a function from Hm to {0, 1}. Let p : Fm → F a degree hm polynomial
that agrees with Ln on Hm. We think of p as a function from {0, 1}3n+4/γ to {0, 1}3γn+4. By a
standard interpolation formula, p is computable in time 2O(n). From Theorem 6, if there exists a
circuit of size S that computes p on a fraction ε = 1

2γn of inputs, then there exists a circuit of size
S2γnc for some c > 0 that computes p everywhere. In particular, it computes Ln everywhere. This
gives a contradiction if γ is such that S2γnc < 2δn. Therefore, we have constructed a function with
exponential average-case complexity.

What we really need is a decision problem with exponential average-case complexity. We will
construct such a problem in the next lecture.
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