
U.C. Berkeley Handout N16
CS294: Pseudorandomness and Combinatorial Constructions October 20, 2005
Professor Luca Trevisan Scribe: Anand Kulkarni

Notes for Lecture 16

1 Proof of the Impagliazzo-Widgerson Theorem

1.1 Recap

We are near the end of our proof of the Impagliazzo-Widgerson result that every exponential time
problem has a polynomial-time transformation to an equivalent exponential-time problem which is
hard on average. To recap from last time:

Suppose L is a language decidable in time 2O(n). Let Ln be the characteristic function of L on
inputs of length n, Ln : {0, 1}n → {0, 1}. Choose an arbitrarily small constant γ > 0, a field F such
that |F| = 2cγn, and a set H ⊆ F with H = 2γn.

We can define the polynomial p : F
m → F with degree(p) ≤ |H|m = 2γn+O(1), m = 1

γ
, that agrees

with Ln on Hm ≈ {0, 1}n.

There exist absolute constants c and c′ such that if c is a circuit of size ≤ 2γn that computes p, ie,

Pr
x

[c(x) = p(x)] ≥
1

2γn
(1)

then there is also a circuit for Ln of size 2c′γn.

Then, p is computable in time 2O(n).

So far we have reached this point: suppose L is decidable in time 2O(n) and not solvable by circuits
of size ≤ 2δn, δ > 0. Suppose we do this entire construction and pick γ = δ

c′
and 2c′γn ≤ 2δn. Then

we can construct a Boolean function that has exponential average case complexity – that is, the
probability of success is exponentially small.

So we are in the right ballpark for our result, but we want a single-bit Boolean function that is
very hard on average, instead of this n-bit Boolean function. This is where we begin today.

1.2 Remainder of proof

Definition 1 (Inner product on strings) For strings a and b, 〈a, b〉 =
∑

i aibi mod 2.

Claim 2 Define a function f : {0, 1}cn+cγn → {0, 1} as f(x, y) = (p(x), y). Suppose there is a
circuit of size ≤ S that computes f with Pr[c(z) = f(z)] ≥ 1

2 + ǫ. The existence of this circuit
contradicts the hardness of L.

Proof:

Pr
x,y

[c(x, y) = f(x, y)] ≥
1

2
+ ǫ ⇒ Pr

x

[

Pr
y

[c(x, y)) = f(x, y)] ≥
1

2
+

ǫ

2

]

≥
ǫ

2
(2)

1

Call this latter condition “x is good”. Now, fix some “good” x. We have that Pry[c(x, y) =
〈p(x), y〉] ≥ 1

2 + ǫ
2 . But this means that the output of c has some nontrivial agreement with the

linear function mapping y → 〈p(x), y)〉.

Recall that there is a limit to the number of linear functions that a given function can closely agree
with. Specifically, our function can have agreement ≥ 1

2 + ǫ
2 with at most 1

ǫ2
linear functions. We

could now use the Goldreich-Levin algorithm to enumerate these linear functions, but there’s no
need. Because the number of functions is so small, we can simply use brute force to enumerate
them in subexponential time. Given c and x, we can find in time 2cγxsize(c) = 2γnS all linear
functions a ∈ {0, 1}cγn such that the function mapping y → c(x, y) has agreement ≥ 1

2 + ǫ
2 with the

function mapping y → 〈a, y〉 . If x is good, then the correct value of p(x) will appear somewhere in
our list. Here is an algorithm for the enumeration.

A (x)
find list of a such that y → c(x, y) agrees ≥ 1

2 + ǫ
2 with y → 〈a, x〉

output random element of list

The probability of this algorithm succeeding is Prx[A(x) = p(x)] ≥ ǫ2

2 > 1
2γn . This holds even if

we replace the random choice in the algorithm with an optimal fixed choice. Thus, the algorithm
A can be implemented deterministically by a circuit of size ≤ S2cγn.

Finally, if we apply the decoding algorithm for polynomials to A, we can construct a circuit of size
S · 2cγn · 2c′′γn that computes p everywhere, and thus computes n everywhere, where c′′ is some
constant polynomial in |F|.

Now choose ǫ = 1
2Ω(n) and we can easily violate the hardness of Ln, giving a contradiction and

resolving our claim. This concludes the proof of the Impagliazzo-Widgerson theorem. �

1.3 Summary of results

Theorem 3 (Impagliazzo-Widgerson) If there is a language L and a constant δ > 0 such that
L is decidable in R

O(n) time and Ln is not solvable by circuits of size ≤ 2δn, then there exists a
language L′ and a constant α > 0 such that L′ is decidable in 2O(n) time, and ∀C of size ≤ 2αn,
Pr[C(x) = L′

n] ≤ 1
2 + 1

2αn .

Theorem 4 (Nisan-Widgerson) If there exists a language L′ and a constant α > 0 such that L′ is
decidable in 2O(n) time, and ∀C of size ≤ 2αn, Pr[C(x) = L′

n] ≤ 1
2 + 1

2αn , then there is a generator

G : {0, 1}O(log n) → {0, 1}n (3)

that is (n2, 1
n
)-pseudorandom, and computable in polynomial time in n. Moreover, P = BPP.

The figure on the next page illustrates the use of such a language in the Nisan-Widgerson algorithm
to build a strong pseudorandom generator. Let L be a language that is hard in the worst-case. For
example, we could set the input to be a Turing Machine 〈M〉 and a string x, and let L be the set

2

of all such pairs where M accepts x in fewer than 2|x| steps. We first define the truth table Lt for
inputs of length t. Then we apply a Reed-Miller code to generate a polynomial p with 2O(t) field
elements. We apply a Hadamard code to each field element to get a function f equivalent to a
language L′

O(t). Then this will be the hard problem we use in the Nisan-Widgerson algorithm to

make a generator. The seed to the generator will be O(t) = O(log n) evaluation points for f and
the output will be the value of f at these points, yielding n bits.

1.4 Comments

1. The one thing currently unknown in this system is the initial premise that there exists a hard
language L

2. This is the best generator we can hope to get because the length of the seed is logarithmic in
the nubmer of pseudorandom bits needed. In particular, this will be ǫ-biased against linear
distinguishers.

3. We will go on to show how the Nisam-Widgerson machinery can be used in the construction
of a randomness extractor.

2 Randomness Extractors

Suppose we have a physical source of bits which has high entropy but which is not uniformly
distributed. We would like a procedure that takes as input a sample from such a distribution and
returns a nearly uniform distribution of bits as output. We can then use these “random” bits
wherever truly random bits are needed.

3

Example 1 Von Neumann Randomness Extractor

Let our source of randomness be a sequence of completely independent bits x1, ..., xn such that

xi =

{

0 with probability p

1 with probability 1-p

where p is unknown.

Then, for each subsequent pair of bits (x2n, x2n+1) in the output string, replace (0, 1) by 0, (1, 0) by 1,
and delete (0, 0) and (1, 1). An easy exercise shows that in the resulting distribution, P (0) = P (1).
On average, this turns n independent bits into 2p(1 − p)n uniform bits.

The shortcoming here is that truly independent bits as we assumed in the example are difficult
to come by. There are impossibility theorems about extracting uniform distributions from inter-
dependent bits – we cannot have a deterministic object which observes a nonrandom source and
produces truly random output.

Let’s suppose intead that our randomness extractor gets some small number t of truly random bits
for its own operation and observes n bits with entropy ≥ k, and outputs m near-uniform bits. This
will be interesting if t ≪ m, and very interesting if t = O(log(n)).

Here are some definitions we will need to build the extractor next time:

Definition 5 (Statistical Distance) If X and Y are distributions, then the statistical distance
between X and Y is defined as

‖X − Y ‖ := max
T :{0,1}m→{0,1}

‖Pr[T (x) = 1] − Pr[T (y) = 1]‖ (4)

where T is an arbitrary statistical test and Pr[T (x) = 1] is the probability that x passes a given
statistical test.

Definition 6 (ǫ-close to uniform) If Um is the uniform distribution over m bits, then X is ǫ-
close to uniform if

‖X − Um‖ ≤ ǫ (5)

4

