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Notes for Lecture 19

1 Improved extractors

Last time we used the Nisan-Widgerson generator and list-decodable codes to build a (k, ǫ) ran-
domness extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m (1)

with entropy equal to k = O(m2)+O(log(1
ǫ
)) and needing d = O(log(1

ǫ
)) bits of extra randomness.,

provided k = nΩ(1). For instance, we could put ǫ = 1
n
, k =

√
n, d = O(log(n)), and m = Ω(n

1

4 ).

However, if we had k = (log(n))2, or k = 2
√

(log(n)), then this construction would require d =

O(
(log( n

ǫ
)2

log(m) ) bits of extra randomness. Today we will give an improved extractor which does not

have a n
ǫ

dependence. This will make use of a new function called a randomness condenser. Before
beginning the improved extractor, we will briefly review the generator.

1.1 Review of Nisan-Widgerson generator

We first recall some facts about the Nisan-Widgerson generator. The generator takes a function
that is hard on average, with input length l; ie, f : {0, 1}l → {0, 1}. We construct a family of sets
S1, . . . Sm such that ∀i, ‖Si‖ = l. Let a ≥ |Si ∩ Sj‖ and pick Si ⊆ 1, . . . , d from the universe. We
showed that such a construction is possible with a = log m, l = c log m, and d = e2c2 log m. The
generator then uses f as an oracle, outputting

NW f (z) = f(z|S1
) . . . f(z|Sm

) (2)

where f(z|Si
) denotes indicates the bitwise intersection of z and Si.

1.2 Analysis of the generator

Suppose D : {0, 1}m → {0, 1} is a linear distinguisher. Then,

Pr[D(NW f (Ud)) = 1] − Pr[D(Um) = 1] ≥ ǫ. (3)

Define an algorithm A which takes as input x, b.

A(x)
pick i ∈ 1, . . . , m

pick r1 . . . ri−1 ∈ {0, 1}
pick z ∈ {0, 1}m conditioned on z‖Si

= x

output D(r1 . . . ri−1bf(z‖Si+1
. . . f(z‖Sm

))

The probability that this algorithm will return a true value when run on f(x) compared to a random
string r is
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Pr[A(x, f(x)) = 1] − Pr[A(x, r) = 1] = Ei(Pr[D(Hi−1) = 1] − Pr[D(Hi) = 1] ≥ ǫ

m
, (4)

using the fact that

Pr[D(NW f (Ud)) = 1] − Pr[D(Um) = 1] =
m∑

i=1

Pr[D(Hi−1) = 1] − Pr[D(Hi) = 1]. (5)

One of A(x, 0), A(x, 1), A(x, 0), or A(x, 1) computes x correctly on at least a 1
2 + ǫ

m
fraction of

the inputs. Once we fix z on z‖[d]−Si
, the complexity of computing all evaluations on z will be

O((m − i)z2) = O(m2).

We concluded that if D is a distinguisher with probability Pr[D(NW f (Ud)) = 1] − Pr[D(Um) =
1] of distinguishing the Nisan-Widgerson generator from a uniform distribution, then A can be
constructed as a circuit constructed using at most log m + (i − 1) + (m − i)z2 ≤ log m + mz2 ≤
log m + mz2 bits of information, that agrees with f on ≥ 1

2 + ǫ
m

.

1.3 Review of the extractor

In the last lecture we saw how to build an extractor by first choosing an error-correcting code with
good list-decoding properties, ie, where the number of possible messages that agree with a string
was at most L. We know that this is possible with an encoding length of n = poly(n, 2m

ǫ
) and list

length L = poly(m
ǫ
), using a code C : {0, 1}n → {0, 1}n such that ∀y ∈ {0, 1}n, ‖xiC(x) agrees with

on ≥ 1
2 + ǫ

m
‖ ≤ L.

So, if x is the n-bit output of a weak random source, then NWExt(x, z) = NW f (z), where
f : {0, 1}l → {0, 1} is a function whose truth table is C(x), with l = log(n) = O(log n + log 1

ǫ
).

In the analysis, we wanted to show that, for sufficiently large entropy k, NWExt is a (k, ǫ) extractor.
We proceeded in a manner similar to the construction of the Nisan-Widgerson pseudorandom
generator.

Claim 1 The Nisan-Widgerson Extractor is a (k, ǫ)-extractor

Proof: Observe that if NWExt is not (k, ǫ), then there must exist a distribution X of entropy ≥ k

and a statistical test D such that Prx,z[D(NWE(x, z)) = 1] −Pr[D(Um) = 1] ≥ ǫ. We show for a

contradiction that X must have an entropy ≤ k.

Call X “bad” if Prx∼X [D(NWE(x, z)) = 1]−Pr[D(Um) = 1] ≥ ǫ
2 . We will show that the number

of bad x is small. We have that Prx∼X [x is bad] ≤ number of bad x

2k . Thus, for a contradiction, we

need to show that the number of bad x is ≤ 2O(m2), contradicting k ≥ O(m2) + log 1
ǫ
.

Fix a bad x. x = C(x). Let f be a function whose truth table is x. Then, NWE(x, z) = NW f (z),
and Prx,z[D(NWE(x, z)) = 1] − Pr[D(Um) = 1] ≥ ǫ

2 . So, there is a circuit constructable using

≤ log m + m2a + 2 bits of information, which describes a string y with agreement ≥ 1
2 + ǫ

2m
with x.

How many “bad” x does this imply? If someone knows the error correcting code and has this circuit

C, then he can get all possible x simply by using log L additional bits, since there are L possible

values in his list. Thus, x can be specified entirely using log m + m2a + 2 + log L bits. Hence, the

number of bad x ≤ 2m2a

+log m+2+log m
ǫ

= 2m2+O(log m)+O(log 1

ǫ
), giving the desired contradiction.

�
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1.4 Small-k distributions

The next result handles the case where the minimum entropy is very small.

Suppose that X is a source of minimum entropy k that is uniform over some subset S ⊆ {0, 1}n

of size 2k. Let’s imagine what would happen if we ran NWEx∼X,z∼Z(x, z) = NW f (z), where f is

the function whose truth-table is C(x), but put m = n
1

4 and k << n. We know that the output of
the extractor will not be close to the uniform distribution, so this means that there exists a linear
distinguisher D such that

D(y) = 1 iff ∃x ∈ S and ∃z ∈ {0, 1}d : NWE(x, z) = y (6)

ie, that Pr[D(Um = 1] ≤ 2k+d

2m and that Pr[D(NWE(X, Ud)) = 1] = 1. Further, let B ⊂ S

be the set of bad x ∈ B. x ∈ B iff Pr[D(NWE(X, Ud)) = 1] − Pr[D(Um) = 1] ≥ 1
4 . Since

Prx∈S [x ∈ B] ≥ 1
2 , we have that ‖B‖ ≥ 2k−1.

What does it mean if x is bad? Each x ∈ B can be computed with a circuit that has a small
description. Let f be a function whose truth table is C(x). The algorithm we gave before will
distinguish x, f(x) from x, r. Suppose instead we define the following condenser algorithm:

Condenser (x, z, i)
for j = 1, . . . , m j 6= i

for y ∈ {0, 1}l

set z‖Si
= y

output f(z‖sj)

The condenser program takes input from the weak random source and a short truly random string.
Its output will be shorter than the input but will have about the same entropy. In particular,
the condenser maps n mostly-random bits with entropy k to

√
n bits with entropy approximately

k. We saw that using the Nisan-Widgerson extractor on small strings leads to ’bad’ x. Using
the condenser, we will have an output string length of (m − 1)z2 ≤ m2 =

√
n, with an entropy

k′ ≥ (k − 1) − log L − 2.

There are some more complications to the condenser; for example, we have given a slightly inaccu-
rate representation of entropy here. We will continue with the condenser during the next lecture.
For the moment, simply observe that the extra random bits needed here are bounded, since the
input is c log n bits long and the output is c log

√
n bits.
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