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Notes for Lecture 20

In the previous two lectures, we have seen that we can use the analysis of the Nisan - Wigderson
generator to argue that starting from a distribution X of min-entropy at least k over strings of
length n, if our construction is not a (k, ε) extractor, then we obtain a short description for a
non-negligible fraction of X. For this to be a contradiction, we need k > O(m2) + log 1

ε . This forces
k to be large (Ω(n)) if we want to use only t = O(logn) truly random bits. In order to achieve
extractors for distributions having smaller min-entropy k, we will need to pre-process the input
random source using a condenser and output a shorter string close to a distribution of the same
min entropy as the original one.
To do that, we apply again the same construction used in the previous lecture based on the NW
generator but now we pick the output length m to be much bigger than k. Therefore, the output
cannot be close to uniform, our construction cannot be an extractor and we have a short description
of a non-negligible fraction of X. Now we can proceed as follows : On input x, we give as output the
string that corresponds to the short description of x. This string will be of length m · 2a =

√
n and

we will enable us to reconstruct x w.h.p (since we are using a suitable ECC for x), thus preserving
the entropy.

Formally, in the NW generator wi use the following parameters:

m subsets of {1, . . . , d} S1, . . . ,Sm.
|Si| = l
|Si ∩ Sj | ≤ a.

For f : {0, 1}l → {0, 1} we denote by NW f (z) = f(z|S1) · · · f(z|Sm)

We use an error-correcting code ECC : f : {0, 1}n → {0, 1}n̄.

For n = 2l we view ECC(x) ∈ {0, 1}n̄ as a function fx : {0, 1}l → {0, 1}. We denote NWE(x, z) =
NW f

x (z) = fx(z|S1) · · · fx(z|Sm)

We will first consider the case where X is uniform over a set of size 2k and therefore has min-entropy
exactly k. In following lectures we will generalize for min - entropy ≥ k.

For m >> k the output cannot be close to uniform, therefore there is a statistical test that
distinguishes it from uniform. By a hybrid argument, we can conclude that there is an i such
that fx(z|Si) can be predicted given fx(z|S1) · · · fx(z|Si−1). Equivalently, for w ∈ {0, 1}l, z|Si =
w, z|[d]− Si random, fx(w) can be predicted given fx(z|S1) · · · fx(z|Si−1). Each of those functions
depend only on < a bits of n and they need at most 2a values to be stored in a table. This gives
us a total of m · 2a bits of information as promised.
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Idea : input x, output m · 2a bits of information. Since we are using ECC(x) (the appropriate
choice is to be specified later), x can be reconstructed from m · 2a bits, which will ensure that we
have almost the same entropy in the output. However, there could be a catch : it could be the case
that only a small fraction of the z allow us to predict x w.h.p.

In order for our condenser to succeed we want to look at the output and be able to reconstruct the
input w.h.p for almost every choice of i and z. Formally :

Take m > 10
ε k . We want to predict fx(z|Si) with probability≥ 1−ε/10, given fx(z|S1) · · · fx(z|Si−1)

To achieve our goal, we would like a predictor function as follows :

Fix random source X uniform over a set of size 2k

Fix particular z
Let x ∼ X , x ∈ {0, 1}n , fx = ECC(x) , i ∼ [1 · · ·m] u.a.r.
(*) given fx(z|S1) · · · fx(z|Si−1) want to compute fx(z|Si)
with probability ≥ 1− ε

10 over the distribution of x and the choice of i

In order to be able to accomplish (*), let’s first look at the Shannon entropy of the distribution
NW fx(z). By definition,

H(Y ) =
∑

a:Pr[a] 6=0

Pr[Y = a]log
1

Pr[Y = a]

Since NW is a deterministic procedure, it can only decrease the entropy (the probabilities of the
events can only get larger). Therefore,

k ≥ H(fx(z|S1) · · · fx(z|Sm)) = H(fx(z|S1))+H(fx(z|S2)|fx(z|S1))+· · ·+H(fx(z|Sm)|fx(z|S1) · · · fx(z|Sm−1))

The left-hand-side of this sum has m terms, each of those measuring how much ’fresh’ information
there is given the previous bits. On average, this information is only k/m = ε/10 :

E
i∼[m]

H(fx(z|Si)|fx(z|S1) · · · fx(z|Si−1)) ≤ k/m ≤ ε/10

Now we are ready to define the predictor that will allow us to accomplish (*) above:

When we want to compute fx(z|Si)
output 1 if Pr[fx(z|Si) = 1|fx(z|S1) · · · fx(z|Si−1)] > Pr[fx(z|Si) = 0|fx(z|S1) · · · fx(z|Si−1)]
output 0 otherwise
In the above, the probabilities are taken over the distribution of x.
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Now suppose that fx(z|S1) = b1 · · · fx(z|Si−1) = bi−1. There are only some of the original x that
can lead to these values. Over the distribution of those x’s, let

Pr[fx(z|Si) = 1|fx(z|S1) = b1 · · · fx(z|Si−1) = bi−1] = pb1,··· ,bi−1
= p

It follows that conditioning on those values, the predictor will be wrong with probability min{p, 1−
p} ≤ plog 1

p + (1− p)log 1
1−p = H(p).

Let z(i, z) be the event that the predictor is wrong for the specific i and z. Taking probability
over the distribution X :

Prx∼X [z(i, z)] ≤
∑

b1,··· ,bi−1

Pr[fx(z|Si) = b1, · · · , fx(z|Si−1) = bi−1] ·H(pb1,··· ,bi−1
) =

= H(fx(z|Si)|fx(z|S1) · · · fx(z|Si−1))

If we want to choose i as well :

Prx∼X,i∼[m][z(i, z)] ≤ E
i

∑
b1,··· ,bi−1

Pr[fx(z|Si) = b1, · · · , fx(z|Si−1) = bi−1] ·H(pb1,··· ,bi−1
) =

= E
i
(H(fx(z|Si)|fx(z|S1) · · · fx(z|Si−1))) ≤ k/m = ε/10

Therefore the algorithm we specified above is correct with probability ≥ 1− ε/10 over the choice of
i and x. We can now conclude that for every z there is a function pz (the predictor defined above)
such that:

= Pr[pz(fx(z|S1) · · · fx(z|Si−1) = fx(z|Si))] ≥ 1− ε/10

We are now ready to define our condenser:

Cond(x, z, i) with z ∈ {0, 1}d, i ∈ [m]

Compute fx = ECC(x), view fx as function fx : {0, 1}l → {0, 1}
for j = 1, · · · , i− 1
{ for every z′ that differs from z only in Si ∩ Sj

output fx(z′|Sj)}
output z, i

In the rest of the lecture, we will present the main lemma which will allow us later to prove that
indeed the output of the condenser is ε-close to a distribution with the same min-entropy as the
original one. Intuitively, we want to prove that the output of the condenser doesn’t loose much
entropy, and for this to be proved we will need a deterministic reconstruction procedure that can
reconstruct the input x of the condenser with high probability. More precisely :
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Lemma 1 Main Lemma Assuming that the ECC has min-distance > n̄/5, there is a determin-
istic function Dec such that

Prx∼X,Z∼Ud,i∼[m][Dec(Cond(x, z, i)) = x] ≥ 1− ε

Proof: Let us first describe what Dec should do :

Dec(C) with C = Cond(x, z, i), z ∈ {0, 1}d, i ∈ [m]

For every w ∈ {0, 1}l

define z′ such that
z′|Si = w
z′|[d]− Si = z
Compute pz′(fx(z′|S1) · · · fx(z′|Si−1) = g(w)
output the unique x such that fx, g are 1

10 -close if such an x exists
otherwise output ERROR

In order to prove our lemma, it is enough to prove the following claim :

Claim 2 With probability ≥ 1−ε over z, i, x g and fx agree on more than 0.9 fraction of the inputs.

The lemma will follow from the properties of our error-correcting code with the correct choice of
min-distance as stated. Proof:(Claim)

Prw∼{0,1}l,x∼X,Z∼Ud,i∼[m][g(w) = fx(w)] ≥ 1− ε/10

This follows from the fact that for each specific z′ the probability is ≥ 1− ε/10 therefore the same
should hold for the average. By a Markov argument, we get :

Prx∼X,z∼Ud,i∼[m][Pr[g(w) = fx(w)] ≥ 0.9] ≥ 1− ε

With the suitable ECC for x, the above is just the probability that we retrieve x, therefore :

Prx∼X,z∼Ud,i∼[m][Dec(Cond(x, z, i)) = x] ≥ 1− ε

which concludes the proof. �

�
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