Notes for Lecture 20

In the previous two lectures, we have seen that we can use the analysis of the Nisan - Wigderson generator to argue that starting from a distribution X of min-entropy at least k over strings of length n, if our construction is not a (k, ϵ) extractor, then we obtain a short description for a non-negligible fraction of X. For this to be a contradiction, we need $k>O\left(m^{2}\right)+\log \frac{1}{\epsilon}$. This forces k to be large $(\Omega(n))$ if we want to use only $t=O(\log n)$ truly random bits. In order to achieve extractors for distributions having smaller min-entropy k, we will need to pre-process the input random source using a condenser and output a shorter string close to a distribution of the same min entropy as the original one.
To do that, we apply again the same construction used in the previous lecture based on the NW generator but now we pick the output length m to be much bigger than k. Therefore, the output cannot be close to uniform, our construction cannot be an extractor and we have a short description of a non-negligible fraction of X. Now we can proceed as follows: On input x, we give as output the string that corresponds to the short description of x. This string will be of length $m \cdot 2^{a}=\sqrt{n}$ and we will enable us to reconstruct x w.h.p (since we are using a suitable ECC for x), thus preserving the entropy.

Formally, in the NW generator wi use the following parameters:
m subsets of $\{1, \ldots, d\} S_{1}, \ldots, \mathcal{S}_{m}$.
$\left|S_{i}\right|=l$
$\left|S_{i} \cap S_{j}\right| \leq a$.

For $f:\{0,1\}^{l} \rightarrow\{0,1\}$ we denote by $N W^{f}(z)=f\left(z \mid S_{1}\right) \cdots f\left(z \mid S_{m}\right)$

We use an error-correcting code $E C C: f:\{0,1\}^{n} \rightarrow\{0,1\}^{\bar{n}}$.

For $n=2^{l}$ we view $E C C(x) \in\{0,1\}^{\bar{n}}$ as a function $f_{x}:\{0,1\}^{l} \rightarrow\{0,1\}$. We denote $N W E(x, z)=$ $N W_{x}^{f}(z)=f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{m}\right)$

We will first consider the case where X is uniform over a set of size 2^{k} and therefore has min-entropy exactly k. In following lectures we will generalize for min - entropy $\geq k$.

For $m \gg k$ the output cannot be close to uniform, therefore there is a statistical test that distinguishes it from uniform. By a hybrid argument, we can conclude that there is an i such that $f_{x}\left(z \mid S_{i}\right)$ can be predicted given $f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)$. Equivalently, for $w \in\{0,1\}^{l}, z \mid S_{i}=$ $w, z \mid[d]-S_{i}$ random, $f_{x}(w)$ can be predicted given $f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)$. Each of those functions depend only on $<a$ bits of n and they need at most 2^{a} values to be stored in a table. This gives us a total of $m \cdot 2^{a}$ bits of information as promised.

Idea : input x, output $m \cdot 2^{a}$ bits of information. Since we are using $\operatorname{ECC}(\mathrm{x})$ (the appropriate choice is to be specified later), x can be reconstructed from $m \cdot 2^{a}$ bits, which will ensure that we have almost the same entropy in the output. However, there could be a catch : it could be the case that only a small fraction of the z allow us to predict x w.h.p.

In order for our condenser to succeed we want to look at the output and be able to reconstruct the input w.h.p for almost every choice of i and z. Formally :
Take $m>\frac{10}{\epsilon} k$. We want to predict $f_{x}\left(z \mid S_{i}\right)$ with probability $\geq 1-\epsilon / 10$, given $f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)$

To achieve our goal, we would like a predictor function as follows :

Fix random source X uniform over a set of size 2^{k}
Fix particular z
Let $x \sim X, x \in\{0,1\}^{n}, f_{x}=E C C(x), i \sim[1 \cdots m]$ u.a.r.
$\left.{ }^{*}\right)$ given $f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)$ want to compute $f_{x}\left(z \mid S_{i}\right)$
with probability $\geq 1-\frac{\epsilon}{10}$ over the distribution of x and the choice of i
In order to be able to accomplish $\left(^{*}\right)$, let's first look at the Shannon entropy of the distribution $N W^{f_{x}}(z)$. By definition,

$$
H(Y)=\sum_{a: \operatorname{Pr}[a] \neq 0} \operatorname{Pr}[Y=a] \log \frac{1}{\operatorname{Pr}[Y=a]}
$$

Since NW is a deterministic procedure, it can only decrease the entropy (the probabilities of the events can only get larger). Therefore,

$$
k \geq H\left(f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{m}\right)\right)=H\left(f_{x}\left(z \mid S_{1}\right)\right)+H\left(f_{x}\left(z \mid S_{2}\right) \mid f_{x}\left(z \mid S_{1}\right)\right)+\cdots+H\left(f_{x}\left(z \mid S_{m}\right) \mid f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{m-1}\right)\right)
$$

The left-hand-side of this sum has m terms, each of those measuring how much 'fresh' information there is given the previous bits. On average, this information is only $k / m=\epsilon / 10$:

$$
\underset{i \sim[m]}{\mathbb{E}} H\left(f_{x}\left(z \mid S_{i}\right) \mid f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)\right) \leq k / m \leq \epsilon / 10
$$

Now we are ready to define the predictor that will allow us to accomplish $\left(^{*}\right)$ above:

```
When we want to compute f}\mp@subsup{f}{x}{}(z|\mp@subsup{S}{i}{}
output 1 if Pr Pf
output 0 otherwise
```

In the above, the probabilities are taken over the distribution of x.

Now suppose that $f_{x}\left(z \mid S_{1}\right)=b_{1} \cdots f_{x}\left(z \mid S_{i-1}\right)=b_{i-1}$. There are only some of the original x that can lead to these values. Over the distribution of those x 's, let

$$
\operatorname{Pr}\left[f_{x}\left(z \mid S_{i}\right)=1 \mid f_{x}\left(z \mid S_{1}\right)=b_{1} \cdots f_{x}\left(z \mid S_{i-1}\right)=b_{i-1}\right]=p_{b_{1}, \cdots, b_{i-1}}=p
$$

It follows that conditioning on those values, the predictor will be wrong with probability $\min \{p, 1-$ $p\} \leq p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}=H(p)$.
Let $\digamma(i, z)$ be the event that the predictor is wrong for the specific i and z. Taking probability over the distribution X :

$$
\begin{gathered}
\operatorname{Pr}_{x \sim X}[\digamma(i, z)] \leq \sum_{b_{1}, \cdots, b_{i-1}} \operatorname{Pr}\left[f_{x}\left(z \mid S_{i}\right)=b_{1}, \cdots, f_{x}\left(z \mid S_{i-1}\right)=b_{i-1}\right] \cdot H\left(p_{b_{1}, \cdots, b_{i-1}}\right)= \\
=H\left(f_{x}\left(z \mid S_{i}\right) \mid f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)\right)
\end{gathered}
$$

If we want to choose i as well :

$$
\begin{gathered}
\operatorname{Pr}_{x \sim X, i \sim[m]}[\digamma(i, z)] \leq \underset{i}{\mathbb{E}} \sum_{b_{1}, \cdots, b_{i-1}} \operatorname{Pr}\left[f_{x}\left(z \mid S_{i}\right)=b_{1}, \cdots, f_{x}\left(z \mid S_{i-1}\right)=b_{i-1}\right] \cdot H\left(p_{b_{1}, \cdots, b_{i-1}}\right)= \\
=\underset{i}{\mathbb{E}}\left(H\left(f_{x}\left(z \mid S_{i}\right) \mid f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)\right)\right) \leq k / m=\epsilon / 10
\end{gathered}
$$

Therefore the algorithm we specified above is correct with probability $\geq 1-\epsilon / 10$ over the choice of i and x. We can now conclude that for every z there is a function p_{z} (the predictor defined above) such that:

$$
=\operatorname{Pr}\left[p_{z}\left(f_{x}\left(z \mid S_{1}\right) \cdots f_{x}\left(z \mid S_{i-1}\right)=f_{x}\left(z \mid S_{i}\right)\right)\right] \geq 1-\epsilon / 10
$$

We are now ready to define our condenser:

```
Cond(x,z,i) with z 
Compute }\mp@subsup{f}{x}{}=ECC(x)\mathrm{ , view }\mp@subsup{f}{x}{}\mathrm{ as function }\mp@subsup{f}{x}{}:{0,1\mp@subsup{}}{}{l}->{0,1
for }j=1,\cdots,i-
{ for every z}\mp@subsup{z}{}{\prime}\mathrm{ that differs from z only in S}\mp@subsup{S}{i}{}\cap\mp@subsup{S}{j}{
output f}\mp@subsup{f}{x}{}(\mp@subsup{z}{}{\prime}|\mp@subsup{S}{j}{})
output z,i
```

In the rest of the lecture, we will present the main lemma which will allow us later to prove that indeed the output of the condenser is ϵ-close to a distribution with the same min-entropy as the original one. Intuitively, we want to prove that the output of the condenser doesn't loose much entropy, and for this to be proved we will need a deterministic reconstruction procedure that can reconstruct the input x of the condenser with high probability. More precisely :

Lemma 1 Main Lemma Assuming that the ECC has min-distance $>\bar{n} / 5$, there is a deterministic function Dec such that

$$
\operatorname{Pr}_{x \sim X, Z \sim U_{d}, i \sim[m]}[\operatorname{Dec}(\operatorname{Cond}(x, z, i))=x] \geq 1-\epsilon
$$

Proof: Let us first describe what Dec should do :
$\operatorname{Dec}(C)$ with $C=\operatorname{Cond}(x, z, i), z \in\{0,1\}^{d}, i \in[m]$
For every $w \in\{0,1\}^{l}$
define z^{\prime} such that
$z^{\prime} \mid S_{i}=w$
$z^{\prime} \mid[d]-S_{i}=z$
Compute $p_{z^{\prime}}\left(f_{x}\left(z^{\prime} \mid S_{1}\right) \cdots f_{x}\left(z^{\prime} \mid S_{i-1}\right)=g(w)\right.$
output the unique x such that f_{x}, g are $\frac{1}{10}$-close if such an x exists otherwise output ERROR

In order to prove our lemma, it is enough to prove the following claim :
Claim 2 With probability $\geq 1-\epsilon$ over $z, i, x g$ and f_{x} agree on more than 0.9 fraction of the inputs.
The lemma will follow from the properties of our error-correcting code with the correct choice of min-distance as stated. Proof:(Claim)

$$
P r_{w \sim\{0,1\}^{\prime}, x \sim X, Z \sim U_{d}, i \sim[m]}\left[g(w)=f_{x}(w)\right] \geq 1-\epsilon / 10
$$

This follows from the fact that for each specific z^{\prime} the probability is $\geq 1-\epsilon / 10$ therefore the same should hold for the average. By a Markov argument, we get :

$$
\operatorname{Pr}_{x \sim X, z \sim U_{d}, i \sim[m]}\left[\operatorname{Pr}\left[g(w)=f_{x}(w)\right] \geq 0.9\right] \geq 1-\epsilon
$$

With the suitable ECC for x, the above is just the probability that we retrieve x, therefore :

$$
\operatorname{Pr} r_{x \sim X, z \sim U_{d}, i \sim[m]}[\operatorname{Dec}(\operatorname{Cond}(x, z, i))=x] \geq 1-\epsilon
$$

which concludes the proof.

