Notes for Lecture 21

1 Condensers

In previous lectures we saw how to construct expanders. But to apply expanders for inputs of large size we need condensers that first reduce inputs size. In the last lecture we saw such construction which we will sketch now.
Let $S_{1}, . ., S_{m}$ be sets such that $S_{i} \in\{1, \ldots, d\},\left|S_{i}\right|=l$ and $\left|S_{i} \bigcap S_{j}\right| \leq a$ for each i, j. Let $E C C:\{0,1\}^{n} \rightarrow\{0,1\}^{\bar{n}}$ be an error correcting code with min-distance at least $\bar{n} / 5$, where $\bar{n}=2^{l}$. We defined condenser like $\operatorname{Cond}(x, z, i)$ as $n^{\prime}=m 2^{a}$ bit string from $\operatorname{ECC}(x)$, where x is n bit string, z is d bit string and $i \in\{1, \ldots, m\}$.
Now we will state the main result of the last lecture. Informally, it says that the condenser doesn't loose much information. We formalize this by giving deterministic procedure $\operatorname{Dec} c_{x}$ that can reconstruct the input of the condenser by it's output.

Lemma 1 Suppose X is a distribution such that $H(X) \leq \frac{\varepsilon m}{10}$. Then there is a decoding procedure Dec c_{x} such that

$$
\left.\operatorname{Pr}_{x \sim X, z \sim\{0,1\}}{ }^{d \sim}, i \sim\{1, \ldots, m\}<10 \operatorname{Dec}_{x}(z, i, \operatorname{Cond}(x, z, i))=x\right] \geq 1-\varepsilon .
$$

In this lecture we will finish the proof of the correctness of composition of condensers and an extractor. First we state two lemmas without a proof.

Lemma 2 Let X is uniform distribution over a set of size 2^{k}, where $k \leq \frac{\varepsilon m}{10}$. Then $\operatorname{Cond}\left(X, U_{d}, U_{[m]}\right)$ is ε-close to a distribution Y of min-entropy at least k.

Lemma 3 If X has min-entropy at least k, where $k \leq \frac{\varepsilon m}{10}$. Then $\operatorname{Cond}\left(X, U_{d}, U_{[m]}\right)$ is ε-close to a distribution Y of min-entropy at least k.

At the very end we are using condensers before applying extractors, because for extractors the ratio between min-entropy and the length of a message should be high. It is where condensers help us they reduce the length of a message until we can start to use extractors. One can see it in Figure 1.

Figure 1: The very end construction by composing condensers and an expander.

Figure 1 shows the very end construction that is composition of sufficiently many condensers reducing the size of the input to k and an extractor at the end. We chose the parameters to be
$a=\log m, n^{\prime}=m^{2}$ and $m=n^{1 / 4}$ thus having a condenser Cond: $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{\sqrt{n}}$ with length of the random input $t=d+\log m$. If input X has min-entropy at least k then output $\operatorname{Cond}\left(X, U_{t}\right)$ is $\frac{10 k}{n^{1 / 4}}$-close to a distribution of min-entropy at least k.
In the rest of the lecture we check that this composition works. Before that let precisely define finite version of condensers.

Definition 4 Cond : $\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow\{0,1\}^{n^{\prime}}$ is a (k, ε)-condenser if for every X of min-entropy at least $k \operatorname{Cond}\left(X, U_{t}\right)$ is ε-close to a distribution Y of min-entropy at least k.

Lemma 5 If Cond $_{1}:\{0,1\}^{n} \times\{0,1\}^{t_{1}} \rightarrow\{0,1\}^{n_{1}}$ is a $\left(k, \varepsilon_{1}\right)$-condenser and $\operatorname{Cond}_{2}:\{0,1\}^{n_{1}} \times$ $\{0,1\}^{t_{2}} \rightarrow\{0,1\}^{n_{2}}$ is $a\left(k, \varepsilon_{2}\right)$-condenser then $\operatorname{Cond}\left(x, z_{1}, z_{2}\right)=\operatorname{Cond}_{2}\left(\operatorname{Cond}_{1}\left(x, z_{1}\right), z_{2}\right)$ is $\left(k, \varepsilon_{1}+\right.$ $\left.\varepsilon_{2}\right)$-condenser.

Proof: Figure 2 shows the relation between outputs of condenses. Cond d_{1} just outputs a distribution that is ε_{1}-close to Y_{1} with min-entropy at least k. Take Y_{1} as an input of condenser $C o n d_{2}$. Then its output is Y_{2} with min-entropy at least k and such that $\left\|Y_{1}-Y_{2}\right\|_{S D} \leq \varepsilon_{2}$. By triangle inequality, a statistical distance sums up to at most $\varepsilon_{1}+\varepsilon_{2}$.

Figure 2: Composing condensers.

Lemma 6 If Cond : $\{0,1\}^{n} \times\{0,1\}^{t_{1}} \rightarrow\{0,1\}^{n_{1}}$ is a $\left(k, \varepsilon_{1}\right)$-condenser and Ext $t_{1}:\{0,1\}^{n_{1}} \times$ $\{0,1\}^{t_{2}} \rightarrow\{0,1\}^{n_{2}}$ is $a\left(k, \varepsilon_{2}\right)$-extractor then $\operatorname{Ext}\left(x, z_{1}, z_{2}\right)=\operatorname{Ext}_{1}\left(\operatorname{Cond}\left(x, z_{1}\right), z_{2}\right)$ is $a\left(k, \varepsilon_{1}+\varepsilon_{2}\right)$ extractor.

Proof: The same reason as in Lemma 5.
Next lemma we showed in the previous lectures.
Lemma 7 There is a universal constant c and Cond : $\{0,1\}^{n} \times\{0,1\}^{c \log n} \rightarrow\{0,1\}^{\sqrt{n}}$ that is a $\left(k, \frac{10 k}{n^{1 / 4}}\right)$-condenser. There is Ext $:\{0,1\}^{n} \times\{0,1\}^{O(\log n)} \rightarrow\{0,1\}^{m}$ that is a $\left(O\left(m^{2}\right), O(1 / m)\right)$ extractor for $m=n^{\Omega(1)}$.

Combining lemmas above we see that the construction of Figure 1 works. Now let start to proof lemmas.

Proof:[Lemma 3] If X has min-entropy at least k then it is a convex combination $\sum_{i} p_{i} X_{i}$ of distributions X_{i} such that each X_{i} is a uniform over a set of size 2^{k}. To state it equivalently: there exist sets S_{1}, \ldots, S_{M}, such that $\left|S_{i}\right|=2^{k}$ and distribution X is given by picking S_{i} with probability p_{i} and outputting a random element of $S_{i} . p_{i}$ is a probability because $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$.
To see it let define a polygon from $X \in \mathbb{R}^{2^{n}}$ and let $X(a)=\operatorname{Pr}[X=a]$. Now by

$$
\begin{cases}X(a) \geq 0 & \forall a \\ \sum_{a} X(a)=1 ; \\ X(a) \leq \frac{1}{2^{k}} & \forall a\end{cases}
$$

we give a polygon in $\mathbb{R}^{2^{n}}$ such that X is into it. But it is known that any point inside a polygon can be described as a convex combination of vertices of polygon. Every vertex v is described by

$$
\begin{cases}X(a)=0 & \forall a \notin v \\ \sum_{a} X(a)=1 ; & \\ X(a)=\frac{1}{2^{k}} & \forall a \in v\end{cases}
$$

So X_{i} is just a set of all non-zero entries in vertex v.
Now, since $\operatorname{Cond}\left(X_{i}, U_{d}, U_{[m]}\right)$ is ε-close to a distribution Y_{i} of min-entropy at least k, X is ε-close to a distribution $\sum_{i} p_{i} Y_{i}$ that has a min-entropy at least k.

Proof:[Lemma 2] Let $t=d+\log m$ as before. For each $z \in\{0,1\}^{t}$ consider

$$
\operatorname{supp}(z)=\left\{y: \operatorname{Pr}_{x \sim X}[\operatorname{Cond}(x, z)=y] \geq 0\right\}
$$

In other words, $\operatorname{supp}(z)=\operatorname{Cond}(X, z)=\left\{y: \exists_{x \in X} \operatorname{Cond}(x, z)=y\right\}$.
Claim 1: $\mathbb{E}_{z \sim U_{t}}|\operatorname{supp}(z)| \geq(1-\varepsilon) 2^{k}$. Proof is by considering decoding function $\operatorname{dec}(z)=\{x \in X$: $\operatorname{Dec}(\operatorname{Cond}(x, z), z)=x\}$. By analyzing decoding process in Figure 3 we see

$$
1-\varepsilon \leq \frac{1}{2^{k}} \underset{z \sim U_{t}}{\mathbb{E}}|\operatorname{dec}(z)|
$$

Since for every $z|\operatorname{supp}(z)| \geq|\operatorname{dec}(z)|$ then Claim 1 holds.
Define $A_{z} \in\{0,1\}^{n^{\prime}}$ any set of size 2^{k} that contains $\operatorname{supp}(z)$. Let Y be a distribution defined by sampling $z \sim\{0,1\}^{t}$ at random and outputting a random element from A_{z}. By definition, Y has a min-entropy at least k because it is a convex combination of distributions of min-entropy k.

Let define the analogous of distributions X and Y that include outputting : Y^{\prime} by sampling $z \sim\{0,1\}^{t}, y \sim A_{z}$ and outputting $(y, z) ; X^{\prime}$ by sampling $z \sim\{0,1\}^{t}, x \sim X$ and outputting $(\operatorname{Cond}(x, z), z)$.
It is easy to see that

$$
\left\|Y-\operatorname{Cond}\left(X, U_{t}\right)\right\|_{S D} \leq\left\|Y^{\prime}-\left(\operatorname{Cond}\left(X, U_{t}\right), U_{t}\right)\right\|_{S D}
$$

because one can always ignore first t bits to test the statistical distance. Now, to finish the whole proof it is enough to show the following claim.

Figure 3: Decoding condenser for fixed z. For each $x_{1} \neq x_{2}$ such that $\operatorname{Cond}\left(x_{1}, z\right)=\operatorname{Cond}\left(x_{2}, z\right)$ we loose an element in $\operatorname{dec}(z)$ because obviously $\operatorname{Dec}_{x}\left(\operatorname{Cond}\left(x_{1}, z\right), z\right)=\operatorname{Dec}_{x}\left(\operatorname{Cond}\left(x_{2}, z\right), z\right)$. But this happens with probability at most ε.

Claim 2: $\left\|Y^{\prime}-X^{\prime}\right\| \leq \varepsilon$. By straightforward calculation,

$$
\begin{gathered}
\left\|Y^{\prime}-X^{\prime}\right\|=\frac{1}{2} \sum_{(z, y)}\left|\operatorname{Pr}\left[Y^{\prime}=(z, y)\right]-\operatorname{Pr}\left[X^{\prime}=(z, y)\right]\right|= \\
\frac{1}{2} \sum_{z \in\{0,1\}\}^{t}, y \in A_{z}}\left|\operatorname{Pr}\left[Y^{\prime}=(z, y)\right]-\operatorname{Pr}\left[X^{\prime}=(z, y)\right]\right|=
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{2}\left(\sum_{z \in\{0,1\}^{t}, y \in \operatorname{supp}(z)}\left|\operatorname{Pr}\left[Y^{\prime}=(z, y)\right]-\operatorname{Pr}\left[X^{\prime}=(z, y)\right]\right|+\sum_{z \in\{0,1\}^{t}, y \in A_{z}-\operatorname{supp}(z)}\left|\operatorname{Pr}\left[Y^{\prime}=(z, y)\right]-0\right|\right)= \\
\frac{1}{2}\left(1-\frac{1}{2^{t}} \sum_{z \in\{0,1\}^{t}} \frac{\operatorname{supp}(z)}{2^{k}}+\frac{1}{2^{t}} \sum_{z \in\{0,1\}^{t}} \frac{2^{k}-\operatorname{supp}(z)}{2^{k}}\right)=\frac{1}{2}\left(2-\frac{2 \mathbb{E}|\operatorname{supp}(z)|}{2^{k}}\right) \leq \varepsilon
\end{gathered}
$$

