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Notes for Lecture 21

1 Condensers

In previous lectures we saw how to construct expanders. But to apply expanders for inputs of large
size we need condensers that first reduce inputs size. In the last lecture we saw such construction
which we will sketch now.

Let S1, .., Sm be sets such that Si ∈ {1, ..., d}, |Si| = l and |Si
⋂

Sj | ≤ a for each i, j. Let
ECC : {0, 1}n → {0, 1}n be an error correcting code with min-distance at least n/5, where n = 2l.
We defined condenser like Cond(x, z, i) as n′ = m2a bit string from ECC(x), where x is n bit
string, z is d bit string and i ∈ {1, ...,m}.
Now we will state the main result of the last lecture. Informally, it says that the condenser
doesn’t loose much information. We formalize this by giving deterministic procedure Decx that
can reconstruct the input of the condenser by it’s output.

Lemma 1 Suppose X is a distribution such that H(X) ≤ εm
10 . Then there is a decoding procedure

Decx such that
Pr

x∼X,z∼{0,1}d,i∼{1,...,m}
[Decx(z, i, Cond(x, z, i)) = x] ≥ 1− ε.

In this lecture we will finish the proof of the correctness of composition of condensers and an
extractor. First we state two lemmas without a proof.

Lemma 2 Let X is uniform distribution over a set of size 2k, where k ≤ εm
10 . Then Cond(X, Ud, U[m])

is ε-close to a distribution Y of min-entropy at least k.

Lemma 3 If X has min-entropy at least k, where k ≤ εm
10 . Then Cond(X, Ud, U[m]) is ε-close to

a distribution Y of min-entropy at least k.

At the very end we are using condensers before applying extractors, because for extractors the ratio
between min-entropy and the length of a message should be high. It is where condensers help us -
they reduce the length of a message until we can start to use extractors. One can see it in Figure 1.
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Figure 1: The very end construction by composing condensers and an expander.

Figure 1 shows the very end construction that is composition of sufficiently many condensers re-
ducing the size of the input to k and an extractor at the end. We chose the parameters to be
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a = log m, n′ = m2 and m = n1/4 thus having a condenser Cond : {0, 1}n × {0, 1}d → {0, 1}
√

n

with length of the random input t = d + log m. If input X has min-entropy at least k then output
Cond(X, Ut) is 10k

n1/4 -close to a distribution of min-entropy at least k.

In the rest of the lecture we check that this composition works. Before that let precisely define
finite version of condensers.

Definition 4 Cond : {0, 1}n×{0, 1}t → {0, 1}n′
is a (k, ε)-condenser if for every X of min-entropy

at least k Cond(X, Ut) is ε-close to a distribution Y of min-entropy at least k.

Lemma 5 If Cond1 : {0, 1}n × {0, 1}t1 → {0, 1}n1 is a (k, ε1)-condenser and Cond2 : {0, 1}n1 ×
{0, 1}t2 → {0, 1}n2 is a (k, ε2)-condenser then Cond(x, z1, z2) = Cond2(Cond1(x, z1), z2) is (k, ε1 +
ε2)-condenser.

Proof: Figure 2 shows the relation between outputs of condenses. Cond1 just outputs a distrib-
ution that is ε1-close to Y1 with min-entropy at least k. Take Y1 as an input of condenser Cond2.
Then its output is Y2 with min-entropy at least k and such that ||Y1 − Y2||SD ≤ ε2. By triangle
inequality, a statistical distance sums up to at most ε1 + ε2.
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Figure 2: Composing condensers.
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Lemma 6 If Cond : {0, 1}n × {0, 1}t1 → {0, 1}n1 is a (k, ε1)-condenser and Ext1 : {0, 1}n1 ×
{0, 1}t2 → {0, 1}n2 is a (k, ε2)-extractor then Ext(x, z1, z2) = Ext1(Cond(x, z1), z2) is a (k, ε1+ε2)-
extractor.

Proof: The same reason as in Lemma 5. �

Next lemma we showed in the previous lectures.

Lemma 7 There is a universal constant c and Cond : {0, 1}n × {0, 1}c log n → {0, 1}
√

n that is a
(k, 10k

n1/4 )-condenser. There is Ext : {0, 1}n × {0, 1}O(log n) → {0, 1}m that is a (O(m2), O(1/m))-
extractor for m = nΩ(1).
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Combining lemmas above we see that the construction of Figure 1 works. Now let start to proof
lemmas.

Proof:[Lemma 3] If X has min-entropy at least k then it is a convex combination
∑

i piXi of
distributions Xi such that each Xi is a uniform over a set of size 2k. To state it equivalently: there
exist sets S1, ..., SM , such that |Si| = 2k and distribution X is given by picking Si with probability
pi and outputting a random element of Si. pi is a probability because pi ≥ 0 and

∑
i pi = 1.

To see it let define a polygon from X ∈ R2n
and let X(a) = Pr[X = a]. Now by

X(a) ≥ 0 ∀a;∑
a X(a) = 1;

X(a) ≤ 1
2k ∀a.

we give a polygon in R2n
such that X is into it. But it is known that any point inside a polygon

can be described as a convex combination of vertices of polygon. Every vertex v is described by
X(a) = 0 ∀a 6∈ v;∑

a X(a) = 1;
X(a) = 1

2k ∀a ∈ v.

So Xi is just a set of all non-zero entries in vertex v.

Now, since Cond(Xi, Ud, U[m]) is ε-close to a distribution Yi of min-entropy at least k, X is ε-close
to a distribution

∑
i piYi that has a min-entropy at least k. �

Proof:[Lemma 2] Let t = d + log m as before. For each z ∈ {0, 1}t consider

supp(z) = {y : Pr
x∼X

[Cond(x, z) = y] ≥ 0}.

In other words, supp(z) = Cond(X, z) = {y : ∃x∈XCond(x, z) = y}.
Claim 1: Ez∼Ut |supp(z)| ≥ (1− ε)2k. Proof is by considering decoding function dec(z) = {x ∈ X :
Decx(Cond(x, z), z) = x}. By analyzing decoding process in Figure 3 we see

1− ε ≤ 1
2k E

z∼Ut

|dec(z)|.

Since for every z |supp(z)| ≥ |dec(z)| then Claim 1 holds.

Define Az ∈ {0, 1}n′
any set of size 2k that contains supp(z). Let Y be a distribution defined by

sampling z ∼ {0, 1}t at random and outputting a random element from Az. By definition, Y has
a min-entropy at least k because it is a convex combination of distributions of min-entropy k.

Let define the analogous of distributions X and Y that include outputting : Y ′ by sampling
z ∼ {0, 1}t, y ∼ Az and outputting (y, z); X ′ by sampling z ∼ {0, 1}t, x ∼ X and outputting
(Cond(x, z), z).

It is easy to see that

||Y − Cond(X, Ut)||SD ≤ ||Y ′ − (Cond(X, Ut), Ut)||SD

because one can always ignore first t bits to test the statistical distance. Now, to finish the whole
proof it is enough to show the following claim.

3



x ∈ X

qqqqqqqqqqq
dec(z) ⊆ {0, 1}n

qqqqqq
supp(z) ⊆ {0, 1}n′

XXXXXXXXXXz

Cond(x, z)

����������9

Decx(z)

Figure 3: Decoding condenser for fixed z. For each x1 6= x2 such that Cond(x1, z) = Cond(x2, z)
we loose an element in dec(z) because obviously Decx(Cond(x1, z), z) = Decx(Cond(x2, z), z). But
this happens with probability at most ε.

Claim 2: ||Y ′ −X ′|| ≤ ε. By straightforward calculation,

||Y ′ −X ′|| = 1
2

∑
(z,y)

|Pr[Y ′ = (z, y)]− Pr[X ′ = (z, y)]| =

1
2

∑
z∈{0,1}t,y∈Az

|Pr[Y ′ = (z, y)]− Pr[X ′ = (z, y)]| =

1
2

 ∑
z∈{0,1}t,y∈supp(z)

|Pr[Y ′ = (z, y)]− Pr[X ′ = (z, y)]|+
∑

z∈{0,1}t,y∈Az−supp(z)

|Pr[Y ′ = (z, y)]− 0|

 =

1
2

1− 1
2t

∑
z∈{0,1}t

supp(z)
2k

+
1
2t

∑
z∈{0,1}t

2k − supp(z)
2k

 =
1
2

(
2− 2 E |supp(z)|

2k

)
≤ ε.

�

4


