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Notes for Lecture 9

In this lecture, we will see an application of the Goldreich-Levin theorem to learning decision trees
with queries under uniform distribution.

In a general learning problem, we are given a function f : {0, 1}n → {1,−1} from a known class
of functions F . A learning algorithm tries to guess the function f by querying the value of f at
different points, and finally outputs a candidate function h : {0, 1}n → {1,−1} which is close to f
with high probability. The boolean function h can be specified by a boolean circuit computing it.

Definition 1 (Learnability) A class F of functions is learnable with queries under uniform
distribution if there exists a learning algorithm A such that for every function f ∈ F , given oracle
access to f and parameters ε, δ > 0, the algorithm outputs, with probability ≥ 1 − δ over the
randomness of the algorithm, a function h = Af (ε, δ) which is ε-close to f . Moreover, the running
time of algorithm A should be poly(n, 1/ε, 1/δ).

As an example, it is easy to see that the class of all linear functions, {χS : χS(x1, . . . , xn) =
(−1)

P
i∈S xi , S ⊆ [n]}, is learnable.

1 Kushilevitz-Mansour General Learning Algorithm

We describe a general learning algorithm that uses the Goldreich-Levin theorem.

Theorem 2 (Goldreich-Levin) There exists a probabilistic algorithm GL that given paramter τ
and oracle access to function f : {0, 1}n → {1,−1}, outputs in time poly(n, 1/τ) a list L = GLf (τ)
of subsets of coordinates that with high probability contains every S ⊆ [n] such that |f̂(S)| ≥ τ .

Proof: There are two small differences between the above statement of the theorem and the
statement we proved in the last lecture:

• We have replaced the condition Prx[f(x) = χS(x)] ≥ 1/2+ε by |f̂(S)| ≥ τ . If |f̂(S)| ≥ τ then
Prx[f(x) = χS(x)] ≥ 1/2 + τ/2 or Prx[¬f(x) = χS(x)] ≥ 1/2 + τ/2. Hence, if f̂(S) ≥ τ , by
running the Goldreich-Levin algorithm once for f and once for ¬f (with parameter ε = δ/2),
we find S with high probability.

• We require that with high probability every S such that f̂(S) ≥ τ is included in list L. By
Parseval inequality, the number of such S is at most 1/ε2. Therefore, after O(log ε) iterations
of the Goldreich-Levin algorithm, we find all such S with high probability.

�

Lemma 3 (Estimating Fourier Coefficients) By random sampling, we can get an estimate
f̄(S) for the Fourier coefficient f̂(S) = 2Prx[f(x) = χS ] − 1; using O(k/δ2) samples, we have
Pr[|f̄(S)− f̂(S)| > δ] ≤ exp(−k).
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Here is a general learning scheme:

Kushilevitz-Mansour-Learn (f)
let L = GLf (τ)
for all S ∈ L, let f̄(S) be an estimation of f̂(S)
let g(x) =

∑
S∈L f̄(S)χS(x)

return h(x) = sign(g(x))

We have Prx[f(x) 6= h(x)] ≤ Ex(f(x) − g(x))2, because if f(x) 6= h(x) then |f(x) − g(x)| ≥ 1.
Moreover with high probability, {S : |f̂(S)| ≥ τ} ⊆ L and |f̄(S)− f̂(S)| ≤ δ for every S ∈ L. Thus,

Pr
x

[f(x) 6= h(x)] ≤ E
x
(f(x)− g(x))2

=
∑
S

(f̂(S)− ĝ(S))2

≤
∑
S∈L

δ2 +
∑
S 6∈L

f̂2(S)

≤ δ2|L|+
∑
S 6∈L

f̂2(S).

2 Learning Decision Trees

If f is a decision tree tree with m leaves, then
∑

S |f̂(S)| ≤ m, and we have∑
S 6∈L

f̂2(S) ≤ τ
∑
S 6∈L

|f̂(S)| ≤ τm.

Thus, we have
Pr
x

[f(x) 6= h(x)] ≤ δ2|L|+ τm ≤ ε/2 + ε/2 ≤ ε

for τ = ε/2m and δ = (ε/2|L|)1/2 = poly(m, 1/ε).

Corollary 4 Polynomial size decision trees are learnable under uniform distribution.

3 Learning Constant-Depth Circuits

We will now sketch an analysis of the learnability of the class F(s, d) of functions computable by
a circuit of size ≤ s and depth ≤ d consisting of AND and OR gates of arbitrary fan-in and NOT
gates (with the usual assumption that NOT gates only appear on the first level and are not counted
in the size and depth of the circuit). Notice that F(s, 2) is the class of CNF and DNF formulas
with s− 1 clauses.
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Remark 1 There are functions f ∈ F(O(n), 2) such that
∑

S |f̂(S)| ≥ 2Ω(n). (Prove as an exer-
cise.) Therefore, for analyzing learnability of F(s, d), we cannot use the same argument that we
gave for decision trees.

We will use a corollary of Hastad’s switching lemma:

Theorem 5 (Hastad, Linial-Mansour-Nisan) For all f ∈ F(s, d), we have
∑

|S|>t f̂2(S) ≤ α

for t = 28(14 log(2s/α))d−1.

By the above theorem, for all f ∈ F(s, d), we have

Pr
x

[f(x) 6= h(x)] ≤ δ2|L|+
∑

S 6∈L,|S|>t

f̂2(S) +
∑

S∈L,|S|>t

f̂2(S)

≤ δ2|L|+ α + τ
∑
S∈L

|f̂(S)|

≤ δ2|L|+ α + τ

(
n

t

)
≤ ε,

for α = ε/4, τ = ε/4nt, δ = (ε/2|L|)1/2, and |L| = poly(n/τ).

Corollary 6 The class F(s, d) is learnable in time nO(log(s/ε))d−1
with accuracy ε.

Finally, we note that for the case d = 2 (and assuming s = nO(1) and constant ε), Mansour showed
the above learning algorithm learns F(s, 2) in quasi-polynomial time nO(log log n). It is an open
question whether the above learning algorithm can learn in polynomial time; however, Jackson
showed using a generalization of the above algorithm that F(s, 2) is learnable in polynonial time.
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