Notes for Lecture 9

In this lecture, we will see an application of the Goldreich-Levin theorem to learning decision trees with queries under uniform distribution.
In a general learning problem, we are given a function $f:\{0,1\}^{n} \rightarrow\{1,-1\}$ from a known class of functions \mathcal{F}. A learning algorithm tries to guess the function f by querying the value of f at different points, and finally outputs a candidate function $h:\{0,1\}^{n} \rightarrow\{1,-1\}$ which is close to f with high probability. The boolean function h can be specified by a boolean circuit computing it.

Definition 1 (Learnability) A class \mathcal{F} of functions is learnable with queries under uniform distribution if there exists a learning algorithm A such that for every function $f \in F$, given oracle access to f and parameters $\epsilon, \delta>0$, the algorithm outputs, with probability $\geq 1-\delta$ over the randomness of the algorithm, a function $h=A^{f}(\epsilon, \delta)$ which is ϵ-close to f. Moreover, the running time of algorithm A should be poly $(n, 1 / \epsilon, 1 / \delta)$.

As an example, it is easy to see that the class of all linear functions, $\left\{\chi_{S}: \chi_{S}\left(x_{1}, \ldots, x_{n}\right)=\right.$ $\left.(-1)^{\sum_{i \in S} x_{i}}, S \subseteq[n]\right\}$, is learnable.

1 Kushilevitz-Mansour General Learning Algorithm

We describe a general learning algorithm that uses the Goldreich-Levin theorem.
Theorem 2 (Goldreich-Levin) There exists a probabilistic algorithm GL that given paramter τ and oracle access to function $f:\{0,1\}^{n} \rightarrow\{1,-1\}$, outputs in time poly $(n, 1 / \tau)$ a list $L=\mathrm{GL}^{f}(\tau)$ of subsets of coordinates that with high probability contains every $S \subseteq[n]$ such that $|\hat{f}(S)| \geq \tau$.

Proof: There are two small differences between the above statement of the theorem and the statement we proved in the last lecture:

- We have replaced the condition $\operatorname{Pr}_{x}\left[f(x)=\chi_{S}(x)\right] \geq 1 / 2+\epsilon$ by $|\hat{f}(S)| \geq \tau$. If $|\hat{f}(S)| \geq \tau$ then $\operatorname{Pr}_{x}\left[f(x)=\chi_{S}(x)\right] \geq 1 / 2+\tau / 2$ or $\operatorname{Pr}_{x}\left[\neg f(x)=\chi_{S}(x)\right] \geq 1 / 2+\tau / 2$. Hence, if $\hat{f}(S) \geq \tau$, by running the Goldreich-Levin algorithm once for f and once for $\neg f$ (with parameter $\epsilon=\delta / 2$), we find S with high probability.
- We require that with high probability every S such that $\hat{f}(S) \geq \tau$ is included in list L. By Parseval inequality, the number of such S is at most $1 / \epsilon^{2}$. Therefore, after $O(\log \epsilon)$ iterations of the Goldreich-Levin algorithm, we find all such S with high probability.

Lemma 3 (Estimating Fourier Coefficients) By random sampling, we can get an estimate $\bar{f}(S)$ for the Fourier coefficient $\hat{f}(S)=2 \operatorname{Pr}_{x}\left[f(x)=\chi_{S}\right]-1$; using $O\left(k / \delta^{2}\right)$ samples, we have $\operatorname{Pr}[|\bar{f}(S)-\hat{f}(S)|>\delta] \leq \exp (-k)$.

Here is a general learning scheme:

```
Kushilevitz-Mansour-Learn (f)
    let L}=G\mp@subsup{L}{}{f}(\tau
    for all S\inL, let }\overline{f}(S)\mathrm{ be an estimation of }\hat{f}(S
    let g(x)= \mp@subsup{\sum}{S\inL}{}\overline{f}(S)\mp@subsup{\chi}{S}{}(x)
    return h(x)=\operatorname{sign}(g(x))
```

We have $\operatorname{Pr}_{x}[f(x) \neq h(x)] \leq \mathbb{E}_{x}(f(x)-g(x))^{2}$, because if $f(x) \neq h(x)$ then $|f(x)-g(x)| \geq 1$. Moreover with high probability, $\{S:|\hat{f}(S)| \geq \tau\} \subseteq L$ and $|\bar{f}(S)-\hat{f}(S)| \leq \delta$ for every $S \in L$. Thus,

$$
\begin{aligned}
\underset{x}{\operatorname{Pr}}[f(x) \neq h(x)] & \leq \underset{x}{\mathbb{E}}(f(x)-g(x))^{2} \\
& =\sum_{S}(\hat{f}(S)-\hat{g}(S))^{2} \\
& \leq \sum_{S \in L} \delta^{2}+\sum_{S \notin L} \hat{f}^{2}(S) \\
& \leq \delta^{2}|L|+\sum_{S \notin L} \hat{f}^{2}(S) .
\end{aligned}
$$

2 Learning Decision Trees

If f is a decision tree tree with m leaves, then $\sum_{S}|\hat{f}(S)| \leq m$, and we have

$$
\sum_{S \notin L} \hat{f}^{2}(S) \leq \tau \sum_{S \notin L}|\hat{f}(S)| \leq \tau m
$$

Thus, we have

$$
\underset{x}{\operatorname{Pr}}[f(x) \neq h(x)] \leq \delta^{2}|L|+\tau m \leq \epsilon / 2+\epsilon / 2 \leq \epsilon
$$

for $\tau=\epsilon / 2 m$ and $\delta=(\epsilon / 2|L|)^{1 / 2}=\operatorname{poly}(m, 1 / \epsilon)$.

Corollary 4 Polynomial size decision trees are learnable under uniform distribution.

3 Learning Constant-Depth Circuits

We will now sketch an analysis of the learnability of the class $\mathcal{F}(s, d)$ of functions computable by a circuit of size $\leq s$ and depth $\leq d$ consisting of AND and OR gates of arbitrary fan-in and NOT gates (with the usual assumption that NOT gates only appear on the first level and are not counted in the size and depth of the circuit). Notice that $\mathcal{F}(s, 2)$ is the class of CNF and DNF formulas with $s-1$ clauses.

Remark 1 There are functions $f \in \mathcal{F}(O(n), 2)$ such that $\sum_{S}|\hat{f}(S)| \geq 2^{\Omega(n)}$. (Prove as an exercise.) Therefore, for analyzing learnability of $\mathcal{F}(s, d)$, we cannot use the same argument that we gave for decision trees.

We will use a corollary of Hastad's switching lemma:
Theorem 5 (Hastad, Linial-Mansour-Nisan) For all $f \in \mathcal{F}(s, d)$, we have $\sum_{|S|>t} \hat{f}^{2}(S) \leq \alpha$ for $t=28(14 \log (2 s / \alpha))^{d-1}$.

By the above theorem, for all $f \in \mathcal{F}(s, d)$, we have

$$
\begin{aligned}
\operatorname{Pr}_{x}[f(x) \neq h(x)] & \leq \delta^{2}|L|+\sum_{S \notin L,|S|>t} \hat{f}^{2}(S)+\sum_{S \in L,|S|>t} \hat{f}^{2}(S) \\
& \leq \delta^{2}|L|+\alpha+\tau \sum_{S \in L}|\hat{f}(S)| \\
& \leq \delta^{2}|L|+\alpha+\tau\binom{n}{t} \leq \epsilon
\end{aligned}
$$

for $\alpha=\epsilon / 4, \tau=\epsilon / 4 n^{t}, \delta=(\epsilon / 2|L|)^{1 / 2}$, and $|L|=\operatorname{poly}(n / \tau)$.
Corollary 6 The class $\mathcal{F}(s, d)$ is learnable in time $n^{O(\log (s / \epsilon))^{d-1}}$ with accuracy ϵ.
Finally, we note that for the case $d=2$ (and assuming $s=n^{O(1)}$ and constant ϵ), Mansour showed the above learning algorithm learns $\mathcal{F}(s, 2)$ in quasi-polynomial time $n^{O(\log \log n)}$. It is an open question whether the above learning algorithm can learn in polynomial time; however, Jackson showed using a generalization of the above algorithm that $\mathcal{F}(s, 2)$ is learnable in polynonial time.

