Notes for Lecture 9

In this lecture, we will see an application of the Goldreich-Levin theorem to learning decision trees with queries under uniform distribution.

In a general learning problem, we are given a function $f : \{0,1\}^n \to \{1,-1\}$ from a known class of functions \mathcal{F} . A learning algorithm tries to guess the function f by querying the value of f at different points, and finally outputs a candidate function $h : \{0,1\}^n \to \{1,-1\}$ which is close to fwith high probability. The boolean function h can be specified by a boolean circuit computing it.

Definition 1 (Learnability) A class \mathcal{F} of functions is learnable with queries under uniform distribution if there exists a learning algorithm A such that for every function $f \in F$, given oracle access to f and parameters $\epsilon, \delta > 0$, the algorithm outputs, with probability $\geq 1 - \delta$ over the randomness of the algorithm, a function $h = A^{f}(\epsilon, \delta)$ which is ϵ -close to f. Moreover, the running time of algorithm A should be $poly(n, 1/\epsilon, 1/\delta)$.

As an example, it is easy to see that the class of all linear functions, $\{\chi_S : \chi_S(x_1, \ldots, x_n) = (-1)^{\sum_{i \in S} x_i}, S \subseteq [n]\}$, is learnable.

1 Kushilevitz-Mansour General Learning Algorithm

We describe a general learning algorithm that uses the Goldreich-Levin theorem.

Theorem 2 (Goldreich-Levin) There exists a probabilistic algorithm GL that given paramter τ and oracle access to function $f : \{0,1\}^n \to \{1,-1\}$, outputs in time $poly(n,1/\tau)$ a list $L = \operatorname{GL}^f(\tau)$ of subsets of coordinates that with high probability contains every $S \subseteq [n]$ such that $|\hat{f}(S)| \geq \tau$.

PROOF: There are two small differences between the above statement of the theorem and the statement we proved in the last lecture:

- We have replaced the condition $\mathbf{Pr}_x[f(x) = \chi_S(x)] \ge 1/2 + \epsilon$ by $|\hat{f}(S)| \ge \tau$. If $|\hat{f}(S)| \ge \tau$ then $\mathbf{Pr}_x[f(x) = \chi_S(x)] \ge 1/2 + \tau/2$ or $\mathbf{Pr}_x[\neg f(x) = \chi_S(x)] \ge 1/2 + \tau/2$. Hence, if $\hat{f}(S) \ge \tau$, by running the Goldreich-Levin algorithm once for f and once for $\neg f$ (with parameter $\epsilon = \delta/2$), we find S with high probability.
- We require that with high probability every S such that $\hat{f}(S) \ge \tau$ is included in list L. By Parseval inequality, the number of such S is at most $1/\epsilon^2$. Therefore, after $O(\log \epsilon)$ iterations of the Goldreich-Levin algorithm, we find all such S with high probability.

Lemma 3 (Estimating Fourier Coefficients) By random sampling, we can get an estimate $\bar{f}(S)$ for the Fourier coefficient $\hat{f}(S) = 2 \mathbf{Pr}_x[f(x) = \chi_S] - 1$; using $O(k/\delta^2)$ samples, we have $\mathbf{Pr}[|\bar{f}(S) - \hat{f}(S)| > \delta] \le \exp(-k)$.

Here is a general learning scheme:

Kushilevitz-Mansour-Learn (f)let $L = GL^{f}(\tau)$ **for** all $S \in L$, let $\overline{f}(S)$ be an estimation of $\hat{f}(S)$ let $g(x) = \sum_{S \in L} \overline{f}(S)\chi_{S}(x)$ **return** $h(x) = \operatorname{sign}(g(x))$

We have $\mathbf{Pr}_x[f(x) \neq h(x)] \leq \mathbb{E}_x(f(x) - g(x))^2$, because if $f(x) \neq h(x)$ then $|f(x) - g(x)| \geq 1$. Moreover with high probability, $\{S : |\hat{f}(S)| \geq \tau\} \subseteq L$ and $|\bar{f}(S) - \hat{f}(S)| \leq \delta$ for every $S \in L$. Thus,

$$\begin{aligned} \mathbf{P}_{x}[f(x) \neq h(x)] &\leq & \mathbb{E}(f(x) - g(x))^{2} \\ &= & \sum_{S} (\hat{f}(S) - \hat{g}(S))^{2} \\ &\leq & \sum_{S \in L} \delta^{2} + \sum_{S \notin L} \hat{f}^{2}(S) \\ &\leq & \delta^{2} |L| + \sum_{S \notin L} \hat{f}^{2}(S). \end{aligned}$$

2 Learning Decision Trees

If f is a decision tree tree with m leaves, then $\sum_{S} |\hat{f}(S)| \leq m$, and we have

$$\sum_{S \notin L} \hat{f}^2(S) \le \tau \sum_{S \notin L} |\hat{f}(S)| \le \tau m.$$

Thus, we have

$$\Pr_{x}[f(x) \neq h(x)] \le \delta^{2}|L| + \tau m \le \epsilon/2 + \epsilon/2 \le \epsilon$$

for $\tau = \epsilon/2m$ and $\delta = (\epsilon/2|L|)^{1/2} = \text{poly}(m, 1/\epsilon).$

Corollary 4 Polynomial size decision trees are learnable under uniform distribution.

3 Learning Constant-Depth Circuits

We will now sketch an analysis of the learnability of the class $\mathcal{F}(s, d)$ of functions computable by a circuit of size $\leq s$ and depth $\leq d$ consisting of AND and OR gates of arbitrary fan-in and NOT gates (with the usual assumption that NOT gates only appear on the first level and are not counted in the size and depth of the circuit). Notice that $\mathcal{F}(s, 2)$ is the class of CNF and DNF formulas with s - 1 clauses. **Remark 1** There are functions $f \in \mathcal{F}(O(n), 2)$ such that $\sum_{S} |\hat{f}(S)| \ge 2^{\Omega(n)}$. (Prove as an exercise.) Therefore, for analyzing learnability of $\mathcal{F}(s, d)$, we cannot use the same argument that we gave for decision trees.

We will use a corollary of Hastad's switching lemma:

Theorem 5 (Hastad, Linial-Mansour-Nisan) For all $f \in \mathcal{F}(s,d)$, we have $\sum_{|S|>t} \hat{f}^2(S) \leq \alpha$ for $t = 28(14 \log(2s/\alpha))^{d-1}$.

By the above theorem, for all $f \in \mathcal{F}(s, d)$, we have

$$\begin{split} \mathbf{Pr}_{x}[f(x) \neq h(x)] &\leq \delta^{2}|L| + \sum_{S \notin L, |S| > t} \hat{f}^{2}(S) + \sum_{S \in L, |S| > t} \hat{f}^{2}(S) \\ &\leq \delta^{2}|L| + \alpha + \tau \sum_{S \in L} |\hat{f}(S)| \\ &\leq \delta^{2}|L| + \alpha + \tau \binom{n}{t} \leq \epsilon, \end{split}$$

for $\alpha = \epsilon/4$, $\tau = \epsilon/4n^t$, $\delta = (\epsilon/2|L|)^{1/2}$, and $|L| = \text{poly}(n/\tau)$.

Corollary 6 The class $\mathcal{F}(s,d)$ is learnable in time $n^{O(\log(s/\epsilon))^{d-1}}$ with accuracy ϵ .

Finally, we note that for the case d = 2 (and assuming $s = n^{O(1)}$ and constant ϵ), Mansour showed the above learning algorithm learns $\mathcal{F}(s, 2)$ in quasi-polynomial time $n^{O(\log \log n)}$. It is an open question whether the above learning algorithm can learn in polynomial time; however, Jackson showed using a generalization of the above algorithm that $\mathcal{F}(s, 2)$ is learnable in polynomial time.